Library
Arnold Arboretum

of
Harvard University
CONTENT

The Genus Eugenia (Myrtaceae) in Malaya by M. R. Henderson 1

To be purchased at the Botanic Gardens, Singapore.
Price $10 or 25s.
THE GARDENS’ BULLETIN
SINGAPORE

Vol. XII
30th April, 1949
Part 1

THE GENUS EUGENIA (MYRTACEAE) IN MALAYA

by

M. R. HENDERSON, F.L.S.

Eugenia Linn. in its widest sense is a very large genus spread over the tropics and subtropics of the New World and the tropics of Asia, Africa and Australia, with one species reaching as far as New Zealand, the bulk of the Old World species being in Asia.

As Merrill and Perry point out, the genus, with some 2,500 binomials, has become unwieldy, but attempts to split it up into more easily handled groups have not met with conspicuous success, for the limits of such groups are very difficult to define. The Asiatic species have been considered to fall into two genera, Syzygium Gaertn. and Jambosa DC., but although the extremes of these groups are distinct enough, they merge into one another in such a way that no clear dividing line can be found.

The most recent work on Malaysian Eugenia is that of Merrill and Perry on the Bornean species (Mem. Amer. Acad. Arts and Sci., XVIII, part 3) and here and in earlier papers (Journ. Arn. Arb., XVIII, XIX) they give their reasons for maintaining Syzygium for the majority of the Asiatic species with Acmena DC. and Cleistocalyx Bl. as separate genera, Acmena characterised by fruit and anther characters, Cleistocalyx by its calyptrate calyces.

Their arguments for separating Syzygium from Eu-eugenia are based mainly on the structure of the seed. Syzygium, they say, has the cotyledons separate and distinct while in Eu-eugenia they have grown together and are
mechanically inseparable. The second point is that the testa in *Syzygium* is adherent to the pericarp while in *Eucalyptus* it is free from it and adherent to the cotyledons.

I propose to examine the second of these statements, the less important of the two, first.

Merrill and Perry are careful to imply that their conclusions were drawn from dried material. I have examined dried fruit of many Malayan species and find that in a number of cases the testa does strip with the pericarp and leave the naked cotyledons, but in other cases it does not. In some of the large fruits of the "Jambosa" group, for example, the seeds lie loosely within the pericarp and the rather thick testa remains closely adherent to the cotyledons. Even in *Syzygium* proper the removal of the pericarp of the dried fruit does not always entail the removal of the testa. In boiled up fruits and fruits preserved in alcohol it seems to be a matter of the methods of handling the specimen whether the testa strips with the pericarp or not. If there are any characters here on which generic distinctions can be based, they should be apparent in living material and I have therefore examined fresh fruit of as many species as possible. I find that in the majority of local species the seed coat remains on the cotyledons when the pericarp is removed. I have not been able to examine fresh fruit of many species of *Eucalyptus*, but so far as I have gone, the two groups are alike in this respect.

The degree of adherence of the seed coat to the cotyledons varies greatly within the section *Syzygium*. In such species as *E. javanica*, *E. malaccensis*, *E. aquea*, etc., where the seed or seeds lie loosely within a cavity in the thick pericarp, the testa is a thick pithy layer removable only with difficulty from the rugose surface of the cotyledons. Other species, such as *E. grandis* and *E. subdecussata*, have a comparatively thick pithy seed coat adherent to the smooth surfaced cotyledons. Innumerable seeds of the former may be picked up in the Botanic Gardens Singapore at appropriate seasons of the year, every one with the pericarp completely removed by bats, but with the testa intact. I have watched a berok monkey (*Macacus nemestrina*) nibbling the fruits of *E. subdecussata*. Here again the slightly sweet pericarp is neatly removed and the seed thrown away with undamaged testa. Some species have a somewhat brittle seed coat which can be removed only in small pieces, while others have a thin, more or less membranous covering which is easily slipped off, very like that of *E. uniflora* L or *E. apiculata* DC., both New World species. Germinating seeds of *Syzygium*, found on the

Gardens Bulletin, S.
ground under the parent tree, usually have the testa more or less intact, the pericarp having rotted away.

It seems apparent therefore that the seed coat and its degree of adherence to the cotyledons can hardly be used as a basis for generic distinctions.

The pseudomonocotyledonous nature of the seed of *Eu-eugenia* appears to be a character of great value, but unfortunately it does not hold throughout the group. It appears that all gradations from completely fused to completely free cotyledons are to be found in *Eu-eugenia*. *E. Michelii* Lam. may have a seed consisting of a single mass of tissue, the cotyledons not separating on germination, or the opposing cotyledon faces may be fused together only partially. *E. apiculata* DC. and *E. myrtifolia* (non Roxb.). both New World species, have completely free cotyledons and the seed structure in these species is not essentially different from that of a typical *Syzygium*. In *E. bracteata* Roxb., an E. Indian species placed in *Eu-eugenia*, the cotyledons are fused from one quarter to one third of the area of their opposing faces, while in *E. Muelleri*, a local species of the section *Syzygium*, seeds have been found with a small area of the opposing faces fused. At least one local species of *Syzygium* has the cotyledons fused into a single mass and another has them so locked together that it is doubtful if they can be separated without fracturing the tissues. In neither of these species do the cotyledons separate on germination.

It appears therefore that the pseudomonocotyledonous nature of the seed can not be regarded as a good generic character. In some cases it cannot be regarded even as a specific character. A similar state of affairs has been pointed out in Cupuliferae by A. Camus—"Soudure des Cotylédons dans le genre Lithocarpus Blume" in Bulletin Muséum National d'Histoire Naturelle, XIV, vi, 461 (1942). Here the fusion of the cotyledons in *Lithocarpus* is frequent, but it is a specific character and does not occur throughout any of the subgenera.

The fruits of *Syzygium* are usually one-seeded, with equal or nearly equal cotyledons which are often green and conspicuously gland dotted, lying side by side, superposed, or, more rarely, obliquely. The opposing faces may be plane, somewhat concave, or folded and interlocked, depending on the method of attachment of the cotyledons to the hypocotyle. The hypocotyle is usually short, the plumule and radicle small, lying near the centre of the inner faces, or sometimes near the periphery. Polyembryony occurs in some species.

In the large fruited "Jambosa" group, *E. malaccensis* for example, the cotyledons are attached to the hypocotyle by stalks which consist of broad, flattened, triangular bands of tissue, arising from the inner faces of the cotyledons, parallel with them for the greater part of their length, then curving at right angles to meet the hypocotyle. The excavations in the cotyledon faces to accommodate these stalks make the structure apparently very complicated, but it becomes perfectly clear when the seeds germinate and the cotyledons begin to move apart. (Fig. 1).

Gardens Bulletin, S.
Fig. 2. a, germinating seed of *E. Ngadimaniana*, showing sessile cotyledons, thick persistent testa, and angled shoot; b, c, *E. conglomerata*, seedling showing stalked cotyledons and epigeal germination.

Del: Chan York Chye.

Fig. 3. *E. pustulata*, a, cotyledons showing conspicuous hypocotyle; b, c, seedling showing epigeal germination.

Del: Chan York Chye.

Gardens Bulletin, S.
The same type of structure in a less complicated form is met with in many of the smaller flowered species. Here the stalks are much shorter and there is much less excavation and folding of the cotyledon faces, the faces usually being nearly plane except for an excavation under each stalk and the radicle and plumule. Other species of *Syzygium* have "sessile" cotyledons attached directly to the hypocotyle and leaving a small circular scar when detached. (Fig. 2).

Normally the hypocotyle, plumule and radicle are small and completely hidden between the cotyledons, but in a number of species the hypocotyle is elongated and reaches the surface of the seed and is accommodated in a deep fold in the cotyledon faces. The Clove (*E. aromatica*), *E. cerina*, *E. polyantha*, *E. conglomerata*, *E. attenuata*, are some of the species which have this type of seed. (Fig. 3).

In a few local species the structure of the seed is very different. In *E. claviflora*, for instance, the cotyledons are closely adherent. There is a definite line or commissure visible on the outside of the seed, but the cotyledons can be separated only by force, and although they do not appear to be fused together, they are closely interlocked by irregular rounded projections and depressions on the inner faces, and separating them usually entails some fracture of the tissues. A large part of the interior of the seed is occupied by a mass of brown tissue ramifying in all directions through the lighter coloured tissue of the cotyledons. This brown mass appears, on sectioning the seed, to be continuous with the testa. The radicle and plumule are not visible when the seed is broken or cut open, and on germination the cotyledons do not move apart but remain as a solid mass until long after the seedling is well established. In this respect the germination is very similar to that of *E. Michelii* Lam. (Fig. 4).

In *E. flosculifera*, a species known from Singapore and perhaps from Kemaman, the seed structure is even more peculiar. The fruit is like a miniature "Jambosa" fruit in that the pericarp is comparatively thick and the seed small. Ripe seeds appear to have the cotyledons completely fused together and no line of demarcation is visible, nor can the cotyledons be separated. The young seed is a green hollow ball with no indication of separate cotyledons, the interior face of the hollow with irregular rounded knobs and the hollow filled with a colourless gummy substance. The completely ripe seed is a mass of dark brown tissue with an irregularly shaped hollow of approximately one quarter of its volume, communicating with the exterior of the seed.

Vol. XII. (1949).
The radicle and plumule are not visible. On germination the cotyledons do not separate. The structure appears similar to that of *E. claviflora*, but carried further towards complete fusion of the cotyledons.

Fig. 4. *E. claviflora*, a, seed; b, separated cotyledons; c, d, seedling showing the cotyledons still unseparated although the seedling is well grown.

Del: Chan York Chye.
Fig. 5. *E. Cumingiana*, a, seedling with unseparated cotyledons; b, seedling with seed cut open.

Del: CHAN YORK CHYE.
Merrill and Perry (Journ. Arn. Arb., XIX, 12 (1938)) reinstate Acmena DC. for a small number of species characterised by the pseudomonocotyledonous nature of the seed and the divericate anther sacs opening by terminal slits or pores. Eugenia Cumingiana Vidal (Acmena acuminatisima (Bl.) Merr. and Perry) is the only representative of this section in the Malay Peninsula. Fresh seed of this species shows a structure very similar to that of E. claviflora. The cotyledons appear to be completely fused and no line of demarcation is visible. The interior of the seed is occupied by a ramifying mass of brown tissue which appears to be continuous with the testa, and there is no separation of the cotyledons on germination. (Fig. 5).

The other generic segregate reinstated by Merrill and Perry and occurring in the Peninsula is Cleistocalyx Bl. This is characterised by the calyptrate nature of the calyx. Our only representative is E. operculata Roxb., which has a seed structure similar to that in those species of Syzygium in which the hypocotyle is elongated to reach the periphery of the seed.

A new section, Fissicalyx, has had to be erected for two closely related species in which the flower structure departs very markedly from that normal in Syzygium, or even in Eugenia sens. lat. In Fissicalyx the calyx tube is prolonged far above the margin of the disc, and the stamens are scattered over its inner surface. The fruit appears to be of the normal Syzygium type.

It seems very improbable, therefore, that a satisfactory basis for splitting Eugenia is to be found in seed characters. On such a basis not only would further groups have to be segregated from Syzygium, as defined by Merrill and Perry, but Eu-eugenia itself would have to be split. The problem is a difficult one and probably can be solved only by someone who can undertake the enormous task of monographing the entire genus. Either Eugenia must be kept in its widest sense, which might necessitate inclusion of such closely related genera as Aphanomyrtus, and then it becomes more unwieldy than ever, or numerous small genera must be segregated from it. If the Old and New World species are to be separated, better characters might be found in the structure of the inflorescences and flowers.

A further complication is that, as Merrill and Perry point out in Mem. Amer. Acad. Arts and Sci., XVIII, 135, Syzygium is not the oldest available name for the group they have placed under that name. Caryophyllus Linn. (1754) is older, but Merrill and Perry use Syzygium Gaertn. (1788) because it is better known and because fewer name changes are involved. They recommend Syzygium for conservation against Caryophyllus. But the practice of

Gardens Bulletin, S.
using a later name in the hope that at some future date it may be conserved against an older valid name seems a somewhat dubious procedure.

Finally, objections to the splitting of such a well known genus as *Eugenia* are certain to be forthcoming from foresters, agriculturists, horticulturists and others who are perfectly familiar with the name Eugenia but who would resent the substitution of a crop of unfamiliar and not too euphonious names. Their point of view, that generic names should be tampered with as little as possible is, I think, sound. Taxonomists appear apt to forget that their work is not an end in itself, but is the basis upon which all economic work must stand, and the changing of generic names, unless absolutely necessary, hinders and confuses that work. It is bad enough to have to change so many specific names, and indeed protests have been made against this, but such changes are in a different category and are inevitable when any large group of plants is critically examined and compared with those from neighbouring countries.

For the purposes of this revision, therefore, *Eugenia* is retained in its wide sense and the following divisions are proposed as Sections:

1. Calyx tube produced above ovary:

2. Stamens on the margin of the disc lining the calyx tube, calyx tube not splitting longitudinally after anthesis:

3. Anther cells not divaricate, usually elongate, opening by longitudinal slits:

4. Calyx calyptrate, the upper part falling as a lid § *Cleistocalyx*

4. Calyx not calyptrate; if lobed, the lobes free § *Syzygium*

3. Anther cells globose, divaricate, opening by terminal slits § *Acmena*

2. Stamens on inside of calyx tube above disc, calyx tube splitting longitudinally after anthesis § *Fissicalyx*

1. Calyx tube not produced above ovary § *Eu-eugenia*

Many authors have stressed the difficulty of defining the species of Eugenia and of giving verbal descriptions which convey a clear idea of the differences between closely related species—differences which may be quite obvious when specimens are compared in the herbarium, or when living trees are examined.

Vol. XII. (1949).
Gagnepain in Bull. Soc. Bot. Fr., 1917, gives a long and detailed account of the characters of Eugenia and the use he makes of them in his account of the genus in Fl. Gen. Indo-Ch., II, 796 (1920). With some of his conclusions I am not in agreement, especially his use of calyptariate petals as a diagnostic character.

The characters which I have found of use in the herbarium and which I have depended upon in this revision are:

1. The shape of the calyx tube, presence or absence of lobes and shape and size of lobes, presence or absence of pseudostalk. The shape of the calyx tube or of the complete unopened bud just before the petals expand or drop is of great importance and practically constant in each species. The majority of species have a campanulate, obconic or funnel shaped calyx tube narrowed abruptly or gradually to a pseudostalk which is a part of the calyx and not a pedicel. When a pedicel is present the articulation between it and the pseudostalk is evident. In other species the calyx tube is clavate, or very much longer than wide, narrowed gradually to the base or rather suddenly contracted below the ovary and then narrowing gradually (peg-shaped). A few species have a more or less fusiform calyx tube, swollen about the ovary and contracted above and below it. The pseudostalk may be well defined or not. Some of the very small flowered species have an urceolate calyx tube, rounded at the base and without pseudostalk, and often slightly contracted just below the mouth. After anthesis the shape of the calyx tube may alter considerably and in some species it opens out and becomes an almost flat disc.

2. The lobing of the calyx mouth is regarded as a constant and reliable character. All degrees of lobing may be present, the extreme case being where the margin of the calyx is truncate. The lobes may be deep, broad and rounded, broad and shallow, short teeth, or merely undulations of the calyx rim. In Cleistocalyx the whole of the upper part of the calyx falls as a lid. The lobes may be persistent or fugacious, either remaining throughout the whole life of the flower and appearing on the apex of the fruit, often enlarged, or dropping off soon after the flower has expanded and giving the appearance of a truncate or wavy calyx rim.

3. The plan of venation of the leaves is very constant for each species. It is best seen in dried specimens and may be classified roughly as follows:

(a) The primary veins much more prominent than the secondaries and quite distinct from them, well spaced and uniting in an intramarginal

Gardens Bulletin, S.
loop or nerve, with often a fainter intramarginal nerve closer to the leaf margin.

(b) Primary veins very numerous and close together, not or hardly distinguishable from the secondaries, or only to be distinguished from them at their junction with the intramarginal nerve. An intramarginal nerve is almost always present, but it is often very close to the leaf margin and inconspicuous.

(c) Primary veins fine and close together but quite distinct from any secondaries that may be visible.

(d) Primary and other veins very faint or invisible.

The veins, including the finer reticulations, are usually more prominent on the lower surface of the leaf than above, but in several species the venation is raised above in a conspicuous manner.

Gland dotting may take the form of small black dots, minute sunk pits, or sometimes slightly raised pustulations, and this character appears to be reasonably constant in any one species, but it seems to vary somewhat with the age of the leaf.

4. The size, complexity, denseness or laxness of the inflorescence, and the relative stoutness or slenderness of its branches, are of considerable importance. All degrees of complexity may be met with, from solitary axillary flowers or short cymes to much branched axillary or terminal panicles. The position of the inflorescence, whether terminal or axillary, that is, from the youngest twigs, or from the older wood below the leaves, appears to be nearly constant in each species.

5. The shape of the twigs, whether terete, angled, or winged, and the colour of their bark and whether it is smooth or flaky are characters which although apparently trivial are remarkably constant. The same applies, with somewhat less force, to the branches of the inflorescence. It may be pointed out here that the primary shoot in seedlings is almost invariably angled and winged, and that in a few species the very youngest twigs may be winged, but very soon become terete.

6. Characters of importance in the fruit and seed are the size of the fruit, if it is certain that ripe fruit is being examined, the colour of the ripe fruit, the shape and size of the apical umbilicus, and the extent of the remains of the calyx tube, and the presence or absence of calyx lobes. The shape of the fruit is usually more or less globose, depressed globose or pyriform or turbinate. In the clavate flowered group it may be spindle shaped or oblong, but when

Vol. XII. (1949).
a fleshy or pulpy pericarp is present, the shape alters considerably on drying. Seed characters are not very reliable in dried material, but the presence or absence of a long conspicuous hypocotyle and the peculiar structure in such species as *E. claviflora* and *E. Cumingiana*, already referred to, are diagnostic. Gagnepain stresses the importance of the position of the cotyledons in the seed, whether juxtaposed or superposed, but I have not found that this character is a reliable one.

7. Bracts and bracteoles appear to be present in all species, but in most they are very fugacious. In some few species they are persistent and quite conspicuous.

8. The great majority of species are glabrous in all their parts, but one or two are tomentose on the leaves and inflorescence.

In the field there are other characters which may be of considerable value, the most important being bark characters, which are reasonably constant for each species provided that adult, or at least not sapling, trees are examined. Saplings may have very different bark from mature trees, and colour and even texture may be altered by exposure to full sunlight. A short description of the bark of the living tree has been given for each species for which such information has been collected. The terms used in these descriptions are those evolved by Mr. E. J. H. Corner and are as follows:

Entire: never creviced, cracked, flaky or fissured, but may be pimply or bumpy.

Smooth: may be finely creviced but not flaky, bumpy or pustular.

Creviced: smooth bark cracked into fine, generally longitudinal lines just large enough to admit the edge of a knife blade and no more.

Fissured: bark split into longitudinal gaping furrows.

Rugose-fissured: bark fissured with rugged ridges between the furrows.

Flaky or *Scaly*: bark scaling or breaking off in pieces.

Fibrous-flaky: bark rather fissured but intervals between fissures break up into rather long narrow fibres and scaly pieces.

Dippled-flaky: bark scaling in small rounded thin pieces leaving small patches of clean new bark.

Papery-flaky: flakes consisting of pieces like tissue paper tightly pressed together.

Gardens Bulletin, S.
Peeling bark: coming off in scroll-like pieces leaving clean sheets of new bark.

Pustular bark: pimply or bumpy with small lenticels.

There is the usual difficulty in describing the colours of the bark, but the terms used are as simple as possible and no attempt is made to define very exactly shades of colour, which in any case vary slightly from tree to tree of the same species.

Many species have a smooth or finely creviced bark which is whitey-grey, pinkish-grey or pinkish-brown to red. Other distinctive barks are the reddish or brown fissured and often scaly barks, and the orange-red papery-flaky barks. The majority of species seem to have thin barks which strip easily from the wood, but some have a comparatively thick and often dark red or purplish inner bark and some have hard and very fibrous inner bark.

The loan of herbarium material from the following institutions is gratefully acknowledged: Botanic Gardens, Buitenzorg, Java; Royal Botanic Gardens, Calcutta; Forest Research Institute, Dehra Dun; Bureau of Science, Manila; Rijks Herbarium, Leiden; Forest Research Institute, Kepong, Malaya. I have also to thank the authorities at Kew for permission to work in the Herbarium there at various times and for photographs of certain species, and the Director of the Natural History Museum, Paris, for photographs of Lamarckian types. I am deeply indebted to Dr. E. D. Merrill for his helpful comments and advice and for copies of his papers on the Bornean, Chinese and Indo-Chinese Eugenias; to Mr. E. J. H. Corner for helpful criticism and detailed field notes on many species; and to Dr. C. X. Furtado for much help with problems of nomenclature. In addition, the gift of seed of various species from the Sydney Botanic Gardens, the Royal Botanic Gardens, Calcutta, and the United States Department of Agriculture is acknowledged with thanks.

The following abbreviations of the titles of works which may not be familiar to some readers have been used throughout:

"F.M.P."—Flora of the Malay Peninsula, by H. N. Ridley.

Vol. XII. (1949).

“S.F.N.” is used throughout to signify Singapore Field Number, a single series of numbers used by all collectors from the Botanic Gardens, Singapore.

EUGENIA Linn.

Trees or shrubs, glabrous, or rarely tomentose or villous. Leaves opposite, exstipulate, usually glandular, penninerved, usually with an intramarginal vein. Flowers solitary in the leaf axils, or in heads, or in few flowered or many flowered cymes, panicles or racemes, usually terminal and axillary, sometimes from the leafless branches; bracts and bracteoles usually inconspicuous and fugacious, occasionally conspicuous and persistent; calyx tube from globose to narrowly elongate turbinate, not at all, or much produced above ovary, the base often contracted into a pseudostalk, lobes 4 or 5, large and prominent or inconspicuous or none, persistent or caducous, very rarely the calyx limb calyptrate or the upper part of the tube splitting irregularly after anthesis; petals usually 4 or 5, free and spreading or more or less connivent or agglutinated and calyptrate; stamens usually numerous in several series on the margin of the disc lining the calyx tube, free or very obscurely collected into 4 bundles, or very rarely on the surface of the calyx tube above the disc, anthers versatile, small, the cells parallel or rarely divaricate, opening longitudinally or very rarely by apical slits, connective gland usually present; ovary 2-celled, rarely 3- or 4-celled, with few to several ovules in each cell; style short or long, usually filiform, stigma punctiform, rarely capitate.

Fruit a berry, but with few (1–2, rarely more) seeds, the rind pulpy or leathery or dry and pithy, the apex usually crowned by the persistent remains of the calyx tube, or the persistent and often enlarged calyx lobes, or both; seeds usually large, the testa membranous, fibrous, cartilaginous, or crustaceous, the cotyledons fleshy, either completely free or partially or wholly fused together.

A genus of about 1,000 species, distributed throughout the tropics.

The following are the most important synonyms for this region: Syzygium Gaertn., Fruct. I, 166, t. 33 (1788); Jambosa DC., Prodr., III, 286 (1828); Caryophyllus Linn., Gardens Bulletin, S.

KEY TO SECTIONS OF EUGENIA IN MALAYA

1. Stamens on margin of disc lining calyx tube, calyx tube not splitting longitudinally after anthesis 2. Stamens on inside of calyx tube above disc, calyx tube splitting longitudinally after anthesis § Fissicalyx.

2. Anther cells not divaricate, usually elongate, opening by longitudinal slits ... 3. Anther cells globose, divaricate, opening by terminal slits ... § Acmena.

3. Calyx calyptrate, not lobed, the upper part falling as a lid ... § Cleistocalyx.
Calyx not calyptrate; if lobed, the lobes free ... § Syzygium.

§ SYZYGIUM, KEY TO GROUPS

1. Calyx tube including pseudostalk at least 1 cm. long ... 2.
Calyx tube including pseudostalk less than 1 cm. long ... 4.

2. Calyx tube campanulate, broadly obconic, broadly funnel shaped or subglobose ... 3.
Calyx tube fusiform or gradually narrowed from apex to base, or clavate or pegshaped

Group 5.

3. Inflorescences very short, flowers usually few, usually fascicled or in short cymes Group 1.
Inflorescences usually spreading and many flowered, racemiform or panicled, not very short, or fascicled, or of contracted cymes

Group 2.

4. Calyx tube campanulate, urceolate, obconic or broadly funnel shaped ... Group 3.
Calyx tube narrowly funnel shaped, tapering evenly from apex to base ... Group 4.

Vol. XII. (1949).
KEY TO MALAYAN SPECIES OF EUGENIA
§ SYZYGIUM

GROUP 1

Flowers large, calyx tube including pseudostalk 1 cm. or more long, more or less campanulate, broadly obconic or broadly funnel-shaped or subglobose, not clavate, fusiform, narrowly funnel-shaped or peg shaped, lobes usually conspicuous and often persistent, inflorescences very short, usually fascicled or in short cymes, not spreading, panicked or racemiform, usually few flowered.

1. Inflorescences on branches below leaves
 Inflorescences terminal or axillary

2. Leaf bases narrowed on to petiole (1) malaccensis.
 Leaf bases cordate or rounded, not narrowed to petiole

3. Leaves tapering gradually from base to apex, broadest near base (2) tekluensis.
 Leaves broadest about middle, tapering to each end

4. Leaf bases cordate or rounded, not tapering on to petiole (4) perakensis.
 Leaf bases narrowed on to petiole

5. Calyx tube globose-turbinate, suddenly contracted into a rather long slender pseudostalk (5) aequa.
 Calyx tube not globose-turbinate, narrowed gradually to base, not suddenly contracted

6. Inflorescence branchlets and peduncle exceedingly stout, nerves below slender and not elevate, leaf base auricled (6) auriculata.
 Inflorescence branchlets slender

7. Vegetative branchlets strongly angled or winged
 Vegetative branchlets terete or at most slightly compressed

8. Main nerves almost at right angles to midrib, not conspicuous below, leaves oblong (7) quadrata.
 Main nerves leaving midrib at less than a right angle, conspicuous below, leaves ovate to elliptic (15) Scortechinii.

9. Leaves very large, c. 30 cm. or more long and c. 20 cm. broad, deeply cordate, main nerves very prominent below, 20-30 pairs, 2-2.5 cm. apart (8) scalarinervis.

Gardens Bulletin, S.
Leaves not as above, not so broad, not deeply cordate, main nerves not exceeding 15 pairs, less prominent 10.

10. Leaves oblong lanceolate, often long acuminate, broadest near base, main nerves slender but elevate below, running straight to a conspicuous and elevate intramarginal nerve 11.
Leaves elliptic, oblong or lanceolate, broadest near middle, main nerves usually not strongly elevate below, or if they are, then curving to intramarginal 12.

11. Leaves not exceeding 15 cm. long and 5 cm. broad, drying blackish; calyx tube 1–1·25 cm. long (9) porphyranthera.
Leaves usually over 15 cm. long, drying brownish or yellowish; calyx tube 1·5 cm. or more long (16) diospyrifolia.

12. Inflorescence sessile, flowers sessile (17) pseudoformosa.
Inflorescence peduncled, flowers pedicelled 13.

13. Calyx tube broadly campanulate, often somewhat swollen at base (16) diospyrifolia.
Calyx tube broadly funnel-shaped, narrowed gradually to base, not swollen (10) siamensis.

14. Leaves thick, not exceeding c. 5 cm. long, elliptic to obovate, apex rounded, mountain shrub (11) oreophila.
Leaves thin, more than 5 cm. long, not obovate, apex acute to acuminate, lowland trees 15.

15. Leaves narrow lanceolate, long narrowed to both ends, long acuminate 16.
Leaves usually elliptic to ovate, not long acuminate 19.

16. Pedicels usually 1 cm. or more long, cultivated tree (12) Jambos.
Pedicels not exceeding 5 mm., or flowers sessile, not cultivated 17.

17. Calyx tube rounded at base, leaves lead colour on both surfaces when dry (13) plumbga.
Calyx tube narrowed gradually to base, leaves drying paler below than above 18.

18. Leaves drying blackish above, brownish white or greyish white below, up to 16 × 4·5 cm., pedicels c. 4–5 mm. (14) Rostadonis.
Leaves drying brown above, pale brown below, flowers usually nearly sessile (18) tiomanensis.

Vol. XII. (1949).
19. Flowers pedicellate, pedicels 6–10 mm. long (19) \textit{pendens}.
Flowers sessile or pedicel less than 5 mm. long 20.

20. Calyx very abruptly contracted into a pseudostalk 8–10 mm. long, leaves oblong elliptic, abruptly narrowed at apex and base (20) \textit{johorensis}.
Calyx gradually narrowed into a pseudostalk 3–4 mm. long, leaves ovate to lanceolate, rather long narrowed at base (15) \textit{Scortechinii} var. \textit{cuneata}.

GROUP 2

Flowers generally smaller than in Group 1, but calyx including pseudostalk at least 1 cm. long, campanulate, obconic or funnel shaped, not clavate, fusiform, narrowly funnelshaped or pegshaped. Inflorescences terminal and axillary, usually spreading and many flowered, racemiform or panicked, not very short, or fascicled, or in contracted cymes.

1. Leaves cordate or rounded at base, not narrowed on to petiole 2.
Leaves narrowed on to petiole, not cordate or rounded 6.

2. Lower surface of leaves, inflorescence and calyx tube softly pubescent (22) \textit{pseudomollis}.
All parts glabrous 3.

3. Flowers densely crowded at ends of inflorescence branchlets, subtended by conspicuous persistent bracts and bracteoles almost as long as calyx tube; leaves cordate amplexicaul (23) \textit{papillosa}.
Flowers densely crowded or not, bracts and bracteoles, if present, fugacious and inconspicuous; leaves shortly rounded at base 4.

4. Calyx tube more or less globose above and suddenly contracted into a slender pseudostalk, fruit turbinate; cultivated (5) \textit{aqua}.
Calyx tube funnel shaped or campanulate and narrowed gradually to a short pseudostalk, fruit globose or pyriform 5.

5. Flowers in a dense inflorescence, sessile or shortly pedicelled, nerves and reticulations raised above and conspicuous; wild tree of inland forest (24) \textit{densiflora}.
Flowers in a lax inflorescence, usually long pedicelled, nerves and reticulations not raised and conspicuous above; cultivated, or wild near sandy seacoasts (21) \textit{javanica}.

\textit{Gardens Bulletin, S.}
6. Nervation of leaves (except midrib) very obscure or practically invisible on both sides, or where visible, the primaries close together and not distinguishable from secondaries, leaves rhomboid, c. 4 × 1.25 cm. (25) *rhomboidea*. Nervation quite visible, at least on lower surface, primaries usually spaced, leaves not rhomboid, usually much more than 4 cm. long ... 7.

7. Leaves linear lanceolate, 6–10 times as long as broad, not exceeding c. 2 cm. broad

Leaves always broader in proportion to length, not linear lanceolate, always exceeding 2 cm. wide 8.

8. Nerves and reticulations well marked and conspicuous on upper surface of leaf and often strongly elevate 9.

Nerves and reticulations usually faint on upper surface, the reticulations at least not raised and conspicuous, often obscure, the primaries usually quite visible but slender 12.

9. Leaves rounded at apex or with a very short blunt point, always more or less obovate

Leaves acute or acuminate at apex, never obovate 10.

10. Leaves narrowly oblong elliptic or oblong lanceolate, with 2 well marked intramarginal nerves, the inner c. 1 cm. from leaf margin, calyx lobes 4–5 mm. tall ... (24) *densiflora*.

Leaves not oblong, intramarginal nerve 1, or if 2, the inner much less than 1 cm. from margin, calyx lobes less than 4 mm. tall ... 11.

11. Inflorescence c. 6 cm. long with very stout branchlets, almost as stout as vegetative branchlets, leaves c. 5 cm. broad with abrupt deflexed point; mountain plant ... (28) *selangorensis*.

Inflorescence much longer, with slender branchlets, leaf 8 cm. or more broad, apex not abruptly deflexed; seashore or cultivated (30) *grandis*.

12. Leaves more or less obovate or oblanceolate, tapering from above middle to petiole, branchlets white or yellow, calyx tube not contracted into a pseudostalk ... (31) *pachyphylla*.

Leaves never obovate or oblanceolate, branchlets reddish or brownish, calyx tube contracted into a distinct, even if very short, pseudostalk 13.

Vol. XII. (1949).
13. Inflorescence short, 5–6 cm. long with few flowers

Inflorescence longer and densely flowered, or if not longer than c. 6 cm., with 30–50 or more flowers

14. Leaves not exceeding c. 20 cm. long, drying greenish or pale brown below, inflorescence branches slender

Leaves exceeding 25 cm. long, drying red brown below, inflorescence branches, short, stout

15. Calyx tube tapering gradually to a very short pseudostalk, leaves narrowly oblong elliptic or oblong lanceolate

Calyx tube rather suddenly contracted into a short rather slender pseudostalk, leaves elliptic or ovate

GROUP 3

Flowers small, calyx tube including pseudostalk less than 1 cm. long, usually less than 6 mm. long, campanulate, urceolate, obconic or broadly funnel shaped, not tubular, peg shaped, fusiform or narrowly funnel shaped, mouth lobed or not, but lobes not spreading, not conspicuous, fugacious or persistent, inflorescences usually terminal or axillary, rarely on branches below leaves, usually many flowered.

1. Mouth of calyx tube in mature bud cut into 4 or 5 distinct lobes, the lobes broad, rounded, triangular, blunt or acute

Mouth of calyx tube in mature bud not distinctly lobed, but truncate, or wavy or with very shallow broad obscure lobes, or the lobes reduced to small points

2. Leaf bases rounded or cordate, not narrowed on to petiole

Leaf bases narrowed on to petiole

3. Primary nerves spaced, c. 1 cm. distant and distinct, at least below, even if slender, more prominent than secondaries, intramarginal nerve usually distinct

Primary nerves close together and not more prominent than secondaries, or very obscure or invisible, intramarginal nerve usually obscure or very close to margin

4. Under surface of leaves, twigs, inflorescences and calyx softly pubescent

Under surface of leaves, twigs, inflorescences and calyx softly pubescent

All parts glabrous

Gardens Bulletin, S.
5. Flowers in dense heads at ends of inflorescence branchlets, bracts and bracteoles conspicuous and persistent, almost as long as calyx tube, leaves amplexicaul ... (23) papillosa.

Flowers not in dense heads, bracts and bracteoles very small or fugacious, leaves not amplexicaul

6. Leaves large, 25 cm. or more long, narrow oblong, with 25 or more pairs of primary nerves ... (60) pergamentacea.

Leaves much smaller and shorter, with fewer pairs of primary nerves ... 7.

7. Inflorescence from twigs below leaves and shorter than leaves, with very few distant flowers ... (34) kemamanensis.

Inflorescence terminal or from upper axils, usually as long as or longer than leaves ... 8.

8. Flowers not densely crowded, inflorescence branchlets slender ... (35) cordifoliata.

Flowers crowded (but not heads), ultimate branchlets of inflorescence short, rather stout 9.

9. Leaves drying greenish, edge strongly revolute, apex retuse or rounded, nerves and reticulations raised and rather conspicuous above ... (37) viridescens.

Leaves drying dark brown, edge slightly revolute, apex bluntly acute, upper surface polished or smooth, nerves and reticulations obscure or invisible ... (36) subdecussata.

10. Calyx club shaped, c. 8–9 mm. long, long narrowed to base ... (124) spissifolia.

Calyx much shorter, not club shaped and long narrowed to base ... 11.

11. Leaves with close raised conspicuous reticulation below, rarely exceeding c. 5 cm. long ... (38) Wrayi.

Leaves rarely less than c. 6 cm. long, nerves and reticulations not raised and conspicuous below 12.

12. Leaf bases usually subcordate, leaves smooth above, nerves not elevate above ... (36) subdecussata.

Leaf bases never subcordate, nerves and reticulations more or less raised above ... 13.

13. Leaves drying brownish, broadest near base, usually more or less acute, calyx lobes triangular subacute ... (40) pahangensis.

Leaves drying greenish, usually rounded or retuse at apex, more or less obovate, calyx lobes rounded ... (37) viridescens.

Vol. XII. (1949).
14. Primary nerves spaced, more prominent, at least below, than secondaries and easily distinguished from them

Primary nerves numerous, close together, hardly or not distinguishable from secondaries, or very obscure, or invisible

15. Inflorescences from branches below leaves or from axils of fallen leaves

Inflorescences terminal or from upper axils

16. Calyx tube urceolate, without pseudostalk

17. Calyx after anthesis opening out into a flat disc, pseudostalk slender, inflorescence few flowered, leaves usually c. 15 cm. or more long with c. 15 pairs of primary nerves

Calyx not opening into a flat disc, pseudostalk very short or none, leaves rarely exceeding 10–12 cm. long with rarely more than 12 pairs of primary nerves

18. Twigs with very pale, almost white bark, calyx obconic, not narrowed into a pseudostalk

Twigs with reddish or brownish bark, calyx campanulate, narrowed into a short pseudostalk

19. Primary nerves not more than 15 pairs

Primary nerves more than 15 pairs

20. Flowers on filiform pedicels 10 mm. or more long, inflorescence laxly few flowered

Flowers pedicelled or not, but pedicels not filiform and always much less than 10 mm. long, flowers usually crowded

21. Bracts conspicuous, as long as, or almost as long as calyx

Bracts small and not conspicuous, if persistent, much shorter than calyx

22. Inflorescences very short and dense, not exceeding 2–3 cm. long, bracts persistent

Inflorescences 5 cm. or more long, bracts not persistent

23. Calyx broadly funnel shaped (more or less cylindric with spreading limb), not narrowed into a pseudostalk, often strongly ribbed or angled

Gardens Bulletin, S-
Calyx not as above, usually narrowed into a pseudostalk, tube obconic or very small, rarely strongly angled or ribbed ... 26.

24. Young twigs angled, with raised lines, calyx, twigs and leaves pustulate ... (43) variolosa.
Young twigs terete, without raised lines, calyx, twigs and leaves not pustulate ... 25.

25. Branchlets with pale polished bark, leaves more or less obovate or oblanceolate (31) pachyphylla.
Branchlets with dark, not polished bark, leaves more or less elliptic or oblong (44) chlorantha.

26. Calyx in mature bud more or less obconic, not exceeding c. 5 mm. long, not contracted at base into a pseudostalk ... 27.
Calyx usually campanulate, always more or less contracted into a pseudostalk, short or long, stout or slender; or if without pseudostalk, then more than 6 mm. long ... 32.

27. Bracts and bracteoles persistent or subpersistent, about one third as long as calyx ... 28.
Bracts and bracteoles fugacious and minute 29.

28. Leaves drying greenish, fruit ellipsoid, rugulose (97) chloroleuca.
Leaves drying brownish, fruit ovoid or obovoid, not rugulose (45) Ngadimaniana.

29. Leaves oblong lanceolate acuminate, inflorescence branches minutely pustulate (96) pustulata.
Leaves not oblong lanceolate, inflorescence branches not pustulate 30.

30. Twigs with very pale bark (106) pseudosubtilis.
Twigs with brown or blackish bark ... 31.

31. Leaves obovate, rounded at apex or shortly acute; shrub of open mountain tops (41) tahanensis.
Leaves more or less elliptic, acuminate; tree of lowland forest ... (45) Ngadimaniana.

32. Leaves small, not more than c. 3 cm. wide ... 33.
Leaves larger, always 4 cm. or more wide ... 43.

33. Apex of leaf blunt or shortly acute, never acuminate ... 34.
Apex of leaf always more or less acuminate ... 38.

34. Bark of inflorescence branchlets rough and scaling in small flakes, leaves usually drying greenish (46) Helferi.
Bark of inflorescence branchlets smooth or striate, not flaky, leaves not drying greenish ... 35.
35. Inflorescence much shorter than leaves, 1–2 cm. long, bark of twigs pale ... (113) alyxifolia. Inflorescence as long as or longer than leaves, bark of twigs reddish or black ... 36.

36. Leaves not more than c. 5 cm. long, reticulations almost invisible above, bark of twigs black; mountain tree ... (112) orites. Leaves rarely less than 6 cm. long, reticulations usually raised and conspicuous above, bark of twigs reddish; lowland or seacoast trees 37.

37. Leaves glaucous below ... (48) glauca. Leaves not glaucous below (48) glauca var. pseudoglauc.

38. Bark of inflorescence branchlets rough and scaling in small flakes, leaves usually drying greenish (46) Helferi. Bark of inflorescence branchlets smooth or striate, leaves not drying greenish ... 39.

39. Calyx with unequal lobes, 2 larger than others and subpetaloid ... (49) anisosepala. Calyx lobes equal or subequal, none subpetaloid 40.

40. Nerves and reticulations raised and conspicuous on upper surface of leaf ... 41. Reticulations not raised and conspicuous above, primary nerves slightly raised or sunk ... 42.

41. Calyx tube abruptly contracted above ovary; cotyledons fused; tall tree ... (126) flosculifera. Calyx tube not so contracted; cotyledons free; small trees ... 43.

42. Inflorescences usually below leaves, never terminal, leaves drying brown, primary nerves slightly raised above ... (110) polyantha. Inflorescences terminal, leaves drying black, primary nerves slightly sunk above (111) Koordersiana.

43. Calyx lobes unequal, 2 larger than others and subpetaloid ... (49) anisosepala. Calyx lobes subequal, none subpetaloid ... 44.

44. Inflorescence branchlets with rough bark scaling in small flakes ... (46) Helferi. Inflorescence branchlets smooth or striate, not flaky ... 45.

45. Bracts and bracteoles persistent, c. one-third length of calyx, fruit ellipsoid, drying pale and rugulose (97) chloroleuca. Bracts and bracteoles minute or fugacious, fruit more or less globose, not drying pale or rugulose 46.

Gardens Bulletin, S.
46. Inflorescences from below leaves, never terminal or from upper axes ... 47.
Inflorescences terminal or from upper few axes ... 48.

47. Leaves usually 15 cm. or more long, with 15 pairs of primary nerves, calyx after anthesis opening out into a flat disc, inflorescences few flowered

(105) leptostemon.

Leaves rarely exceeding 10–12 cm. long, primary nerves rarely more than 12 pairs, calyx not opening into a flat disc, inflorescence many flowered ... (110) polyantha.

48. Nerves and reticulations raised on upper surface of leaf and conspicuous ... 49.

Secondary nerves and reticulations not raised on upper surface, inconspicuous or invisible, primary nerves usually slender, often sunk 58.

49. Apex of leaf acuminate ... 50.

Apex of leaf rounded, obtuse, shortly bluntly acute, or with an abrupt short point ... 53.

50. Inflorescence branches very stout, apex of leaf abruptly deflexed; mountain plant

(28) selangorensis.

Inflorescence branches slender, apex of leaf not deflexed; lowland plants ... 51.

51. Pseudostalk slender, distinct, about half the length of the calyx tube

(48) glauca var. pseudoglauca.

Pseudostalk short and stout ... 52.

52. Calyx lobes more or less orbicular, c. 1–2 mm. tall

(66) Haniffii.

Calyx lobes broad and shallow, less than 1 mm. tall ... (70) Brantiana.

53. Leaves sessile, or petioles not more than 2–3 mm. long; mountain plant ... (37) virideszens.

Leaves not sessile, petioles usually exceeding 5 mm. long; lowland plants ... 54.

54. Leaves glaucous below ... (48) glauca.

Leaves not glaucous below ... 55.

55. Calyx ribbed, rather abruptly contracted into a short stout pseudostalk ... (29) palembanica.

Calyx not ribbed, narrowed gradually into pseudostalk ... 56.

56. Primary branches of inflorescence very stout, as stout as twigs, flowers densely crowded, petals usually calyptrate ... (50) Kiahii.

Primary branches of inflorescence slender, thinner than twigs ... 57.

Vol. XII. (1949).
57. Calyx lobes distant, petals usually calyptrate, flowers densely crowded
 (50) Kiahii var. angustifolia.
 Calyx lobes approximate, petals free, flowers not densely crowded
 (51) Burkilliana var. garcinifolioides.

58. Inflorescences racemose, not panicled .. 59.
 Inflorescences paniculate .. . 62.

59. Calyx after anthesis opening out into a flat disc, pseudostalk slender .. (105) leptostemon.
 Calyx not opening into a flat disc, pseudostalk stout 60.

60. Inflorescence very short, almost sessile, not exceeding c. 2 cm. long, leaves thin, conspicuously gland dotted (43) variolosa.
 Inflorescences usually several in each axil, peduncled, c. 5 cm. long or longer .. 61.

61. Pseudostalk less than half length of calyx (52) Duthieana.
 Pseudostalk about half length of calyx (53) Griffithii.

62. Secondary branchlets of inflorescence very short, usually under 1 cm. long, and as stout as twigs, leaves more or less orbicular .. (50) Kiahii.
 Secondary branchlets of inflorescence over 1 cm. long, usually slender, spreading, or if not more than 1 cm. long, much more slender than twigs, leaves not orbicular 63.

63. Flowers densely crowded, secondary branchlets of inflorescence slender, not exceeding c. 1 cm. long 64.
 Secondary branchlets of inflorescence 2 cm. or more long, flowers not densely crowded except sometimes at ends of branchlets 65.

64. Primary nerves usually 4–5 pairs, curving sharply up to intramarginal, young twigs whitey-brown (33) Millsii.
 Primary nerves more than 6 pairs, running nearly straight to intramarginal, young twigs reddish brown (66) Haniffii.

65. Inflorescences short and fewflowered, often from lower axils, calyx after anthesis opening out into a flat disc (105) leptostemon.
 Inflorescences terminal or from upper axils, many flowered, calyx not opening into a flat disc 66.

Gardens Bulletin, S.
66. Calyx suddenly contracted or narrowed into a well marked rather slender pseudostalk about half length of calyx tube

Calyx with very short stout pseudostalk less than half length of tube 67.

67. Twigs somewhat angled and with definite raised lines between nodes

(54) Thumra var. penangiana.
Twigs terete without raised lines 68.

68. Calyx in mature bud c. 8 mm. long, 5 mm. across mouth, longitudinally ribbed (29) palembanica.
Calyx shorter and not so wide, not ribbed 69.

69. Primary nerves and intramarginal noticeably sunk above
Primary nerves and intramarginal not noticeably sunk above 70.

70. Bark of twigs whitish, calyx c. 4 mm. long

(55) Swettenhamiana.
Bark of twigs reddish or red brown, calyx 6–7 mm. long 71.

71. Intramarginal nerve 1–3 mm. from leaf margin, not more
Intramarginal nerve at least 4 mm. from margin, usually more 72.

72. Primary nerves leaving midrib almost at a right angle, twigs with almost black, very smooth bark
Primary nerves leaving midrib at an angle of 50–60 degrees, bark of twigs reddish, often rather flaky 73.

73. Leaves glaucous below, usually under 10 cm. long

(48) glauca.
Leaves not glaucous below, usually over 10 cm. long 74.

74. Calyx lobes rather spreading in bud, not closely adpressed over petals, flowers green, young leaves blue

(57) Ridleyi.
Calyx lobes not spreading in bud, closely adpressed over petals, flowers white, young leaves purple 75.

75. Primary nerves rarely more than 4–5 pairs, twigs with greyish white bark, often somewhat angled and with raised lines between the nodes

(33) Millsii.
Primary nerves always more than 6 pairs, twigs with blackish, reddish or brownish bark, terete, without raised lines 76.

Vol. XII. (1949).
76. Calyx in mature bud c. 8 mm. long and 5 mm. wide, ribbed ... (29) palembanica. Calyx shorter and narrower, not ribbed ... 77.

77. Leaves rarely more than c. 10 cm. long, primary nerves not more than c. 12 pairs, usually less, inflorescence usually longer than leaves ... 78. Leaves rarely less than c. 15 cm. long, with 12-15 pairs of primary nerves, inflorescences not longer than leaves ... 79.

78. Calyx lobes more or less orbicular and overlapping in bud ... (111) Koordersiana. Calyx lobes broad and shallow, not overlapping in bud ... (70) Brantiana.

79. Leaves rarely more than c. 23 cm. long, inflorescences from half as long to as long as leaves ... (58) Dyeriana. Leaves usually over 25 cm. long, inflorescences rarely reaching half their length ... (59) Hemsleyana.

80. Flowers on long filiform pedicels 10 mm. or more long, inflorescence laxly few flowered ... (71) filiformis. Flowers sessile or pedicelled, pedicels much less than 10 mm. long ... 81.

81. Calyx narrowed or contracted suddenly at base into a well marked, short or long, stout or slender pseudostalk ... 82. Calyx without definite pseudostalk ... 97.

82. Inflorescence branches with rough bark scaling in small flakes ... (46) Helferi. Inflorescence branches smooth or striate, not flaky ... 83.

83. Inflorescences less than half length of leaves, usually racemiform, occasionally paniculate ... 84. Inflorescences at least half length of leaves, usually paniculate, occasionally racemiform ... 89.

84. Calyx opening after anthesis into a flat disc, inflorescences usually from lower axils ... (105) leptostemon. Calyx not opening into a flat disc, inflorescences terminal or from upper axils ... 85.

85. Calyx, twigs and leaves pustulate ... (43) variolosa. Calyx, twigs and leaves not pustulate ... 86.

86. Leaves not exceeding c. 13 cm. long, drying greenish, flowers crowded in a dense inflorescence broader than long ... (66) Haniffii.

Gardens Bulletin, S.
Leaves exceeding 16 cm. long, drying blackish, reddish or brownish, flowers not densely crowded, except at ends of inflorescence branchlets, inflorescence longer than broad ... 87.

87. Leaves markedly oblong ... (60) pergamentacea.
Leaves more or less elliptic ... 88.

88. Calyx c. 8-9 mm. long ... (32) atronervia.
Calyx c. 5-6 mm. long ... (59) Hemsleyana.

89. Leaves 20-25 cm. long or more ... 90.
Leaves rarely exceeding 15-17 cm. long ... 91.

90. Leaves oblong ... (60) pergamentacea.
Leaves elliptic ... (59) Hemsleyana.

91. Leaves glaucous below, bark of young twigs usually scaly flaky ... (48) glauca.
Leaves not glaucous below, bark of young twigs usually smooth ... 92.

92. Inflorescences nearly sessile or very shortly pedunculate, branching widely from base, petiole c. 5 mm. long ... (61) Gageana.
Inflorescences definitely peduncled, petiole c. 1 cm. long ... 93.

93. Inflorescence of clustered racemes (53) Griffithii.
Inflorescences paniculate ... 94.

94. Inflorescence lax with sparse slender branchlets 95.

Inflorescence dense with crowded branchlets 96.

95. Twigs with nearly black bark, nerves and reticulations slightly raised on upper surface (56) subhorizontalis.
Twigs with red or brown bark, secondary nerves and reticulations obscure or invisible above, primary nerves often sunk ... (53) Griffithii.

96. Inflorescence branches stout, fruit with apical calyx tube c. 5-6 mm. long ... (62) Prainiana.
Inflorescence branches slender, apical calyx tube on fruit none ... (64) oblatu.

97. Bracts and bracteoles persistent, about one-third as long as calyx tube, fruit ellipsoid, drying pale and rugulose ... (97) chloroleuca.
Bracts and bracteoles fugacious or minute, fruit not ellipsoid, or drying pale and rugulose ... 98.

Vol. XII. (1949).
98. Leaves oblong lanceolate, inflorescence branches and twigs minutely pustulate
Leaves elliptic to oblong- or ovate-elliptic, inflorescence branches and twigs not pustulate

99. Inflorescence a short panicle, calyx c. 4-5 mm. long, sessile
Inflorescence of short racemes, calyx c. 6-8 mm. long, pedicelled

100. Calyx tube cylindric, ribbed, leaves drying greenish or pale brown, not exceeding c. 15 cm. long
Calyx tube not cylindric or ribbed, leaves drying reddish or blackish brown, usually over 20 cm. long

101. Flowers on filiform pedicels 10 mm. or more long
Flowers sessile, or if pedicelled, pedicels not filiform and much shorter

102. Leaves not exceeding 6-7 cm. long, caudate acuminate
Leaves usually exceeding 10 cm. long, acuminate, acute or blunt, rarely caudate acuminate, or if less than 10 cm. long, not caudate acuminate

103. Inflorescence branchlets with rough bark, scaling in small flakes
Inflorescence branchlets with smooth, striate, or scurfy but not flaky bark

104. Inflorescence racemose, few flowered (3-6), very much shorter than leaves
Inflorescences paniculate, many branched, or fascicled, many flowered, usually at least half length of leaves

105. Calyx suddenly contracted at base into a short slender pseudostalk
Calyx gradually narrowed to base

106. Inflorescence branches and branchlets square, strongly 4-angled or almost winged
Inflorescence branches and branchlets terete or more or less compressed and striate, not strongly angled or winged

107. Calyx more or less campanulate, not ribbed; nervation usually invisible on upper surface of leaf, not raised and often obscure below
Calyx broadly funnel shaped, vertically ribbed or ridged
108. Petals with conspicuous glands, fruit smooth without persistent calyx lobes; lowland tree
 (81) linocieroidea.
 Petals without glands, fruit ridged, with persistent calyx lobes; mountain tree
 (82) goniocalyx.
109. Flower buds narrow, not exceeding c. 2 mm. diam. at widest point
 (110).
 Flower buds wider, always 3 mm. or more diam. at widest point
 (112).
110. Calyx suddenly contracted into a slender pseudostalk about half length of tube, inflorescence smooth
 (75) syzygioides.
 Calyx gradually narrowed into a pseudostalk, *inflorescence branches scurfy or pustulate 111.
111. Inflorescence branches scurfy, calyx not pustulate
 (76) castanea.
112. Calyx more or less campanulate or obconic, not angled or ribbed
 113.
 Calyx broadly funnel shaped, more or less angled or ribbed
 114.
113. Inflorescence branches stout, twigs with pale polished bark
 (65) laevicaulis.
114. Leaves rarely more than 2-2.5 cm. broad, fruit globose without persistent calyx lobes, dark
 coloured in life, inner bark thick
 (81) linocieroidea.
115. Bark of inflorescence branches rough, scaling in small flakes
 (46) Helferi.
116. Bark of inflorescence branches smooth or striate, not flaky
 116.
117. Calyx contracted or narrowed at base into a definite rather slender pseudostalk about half length of tube
 117.
 Pseudostalk very short and stout or none
 126.
118. Inflorescences in axils of all leaves, very short with few branches, not reaching one quarter length of leaves, leaves narrow lanceolate, 5-6 times as long as broad
 (47) Graeme-Andersoniae.
 Inflorescences at least half as long as leaves, much branched, terminal or from upper axils, leaves broader in proportion to length
 118.

Vol. XII. (1949).
118. Inflorescence peduncle very stout, almost or quite as stout as twigs, secondary branchlets usually also stout, not exceeding c. 1 cm. long, flowers very densely crowded... 119. Inflorescence peduncle slender, thinner than twigs, secondary branchlets also slender and often exceeding 1 cm. long... 121.

119. Leaves oblong orbicular with a very short blunt point... (50) Kiahii. Leaves more or less elliptic, acuminate... 120.

120. Calyx tube in mature bud over 5 mm. long, fruit oblong with a long apical calyx tube... (62) Prainiana. Calyx tube less than 5 mm. long, fruit globose without apical calyx tube... (66) Haniffii.

121. Calyx suddenly contracted into a slender pseudostalk... (75) syzygioides. Calyx gradually narrowed to base... 122.

122. Calyx lobes dropping soon after petals fall, not persisting in fruit... 123. Calyx lobes persistent, appearing on the apex of at least the young fruit... 124.

123. Calyx tube slightly swollen near base, leaves more or less oblong elliptic or oblong lanceolate, shortly narrowed to apex and base, length about 2–2½ times breadth... (80) tumida. Calyx tube not swollen near base, leaves lanceolate long narrowed to apex and base, length about 3–4 times breadth... (67) camptophylla.

124. Fruit oblong, almost white when ripe, nerves and reticulations hardly raised on upper surface of leaf... (79) longiflora. Fruit more or less globose, dark coloured, nerves more or less raised above... 125.

125. Mature flower buds 7–9 mm. long, leaves usually over 12 cm. long, drying reddish or blackish brown above, gently acuminate... (64) oblata. Mature flower buds 5–6 mm. long, leaves not usually exceeding 10–11 cm. long, drying greenish or pale brown above, rather abruptly acuminate... (66) Haniffii.

126. Bracts and bracteoles persistent, more or less conspicuous, often persisting to fruiting stage, one quarter to one third length of calyx tube... 127. Bracts and bracteoles very small and not conspicuous, or dropping early and not persistent... 129.

Gardens Bulletin, S.
127. Inflorescence branchlets very stout, as stout as twigs, flowers in heads at their apices
 (83) quadribracteata.
 Inflorescence branches slender, flowers not in heads
 128.

128. Inflorescence half as long or as long as leaves, spreading, fruit glandular, leaves drying reddish or brownish
 (98) fastigiata.
 Inflorescences not reaching half length of leaves, fruit eglandular, leaves drying greenish or pale brown
 (97) chloroleuca.

129. Flowers very small, calyx not exceeding c. 4-5 mm. long and 3-3.5 mm. across mouth
 130. Flowers larger, calyx at least 5 mm. long, usually more, and c. 5 mm. across mouth or more

130. Inflorescence with few branchlets almost or quite as stout as twigs, flowers in dense heads at their apices
 (83) quadribracteata.
 Inflorescence many branched, branchlets thinner than twigs, flowers not in dense heads

131. Leaves long acuminate, lanceolate
 132. Leaves not long acuminate, or if so, not lanceolate
 133.

132. Twigs with pale bark, leaves drying pale brown with strongly revolute edges, inflorescence branchlets striate or more or less compressed, not sharply 4-angled; tree of mountain forest
 (84) cyrtophylloides.
 Twigs with red brown or blackish bark, leaves drying reddish or dark brown, edges not revolute, inflorescence branchlets usually smooth, strongly and sharply 4-angled; tree of lowland forest, usually near mangrove
 (73) oleina.

133. Bark of twigs pale, almost white
 134. Bark of twigs reddish, brownish or black
 135.

134. Petioles usually over 5 mm. long, leaves drying brown to black
 (106) pseudosubtilis.
 Petioles under 5 mm. long, usually c. 2 mm. long or none, leaves drying greenish
 (37) viridescens.

135. Leaves elliptic or lanceolate, not obovate or oblanceolate
 136. Leaves more or less obovate or oblanceolate, apex rounded or with short abrupt point
 137.

Vol. XII. (1949).
136. Leaves elliptic, acutely acuminate, usually over 3 cm. wide, inflorescence branches not strongly angled
Leaves more or less lanceolate, acute or bluntly acuminate, rarely more than c. 2.5 cm. wide, inflorescence branches strongly angled

(70) Brantiana.

(73) oleina.

137. Leaves almost sessile, or petioles not more than 2–3 mm. long
Leaves distinctly petioled, petioles usually exceeding c. 5 mm. long

(37) viridescens.

(73) Brantiana.

Leaves more or less lanceolate, acute or bluntly acuminate, rarely more than c. 2.5 cm. wide, inflorescence branches strongly angled

138. Twigs with black bark, leaves 5–6 cm. broad;
shrub

(41) tahanensis.

Twigs with greyish or brownish bark, leaves rarely more than 3–5–4 cm. broad; tree

(85) cerina.

139. Leaves narrow oblanceolate, inflorescences short, c. 2–2.5 cm. long in axils of all leaves;
river bank tree

(47) Graeme-Andersoniae.

Leaves not as above, inflorescences terminal or from upper axils; not river bank trees

140. Leaves very long narrowed to base, petiole c. 2 cm. long; cultivated

(28) selangorensis.

Leaves not very long narrowed to base, petiole not exceeding c. 1.5 cm., usually 1 cm. or less; wild

141. Twigs very stout, c. 5 mm. diam. near uppermost pair of leaves, inflorescence peduncle and branchlets almost as stout

(44) chlorantha.

Twigs and inflorescence branchlets slender, twigs c. 2–3 mm. diam. near uppermost pair of leaves

142. Reticulations more or less raised and easily visible on upper surface of leaves, bark of twigs dark, leaves 5–6 cm. broad, apex deflexed

(28) selangorensis.

Reticulations invisible above, bark of twigs pale, leaves 3–4 cm. broad, apex not deflexed

(65) laevicaulis.

143. Leaves small, not exceeding c. 5 cm. long, rhomboid, oblanceolate or obovate

(25) rhomboidea.

Leaves longer, usually over 6 cm. long, not rhomboid, oblanceolate or obovate

144. Calyx more or less cylindric below, usually strongly ribbed, inflorescence rather lax, the branches strongly angled, almost winged, leaves up to c. 15 × 8 cm.

(44) chlorantha.

Gardens Bulletin, S.
Calyx not cylindric below, gradually narrowed to base, not ribbed, at most more or less striate, inflorescence dense, branchlets striate or compressed, leaves not exceeding c. 12×5 cm.

145. Twigs with pale yellow or greyish white bark

146. Twigs with reddish or brownish bark

147. Calyx lobes overlapping in bud, more or less orbicular, c. 3 mm. tall (87) Goodenovii. Calyx lobes not overlapping in bud, triangular, c. 1 mm. tall (65) laevicaulis.

147. Inflorescence narrow, individual inflorescences with few branches, leaves coriaceous, edge strongly revolute (78) praestigiosa. Inflorescence wide, individual inflorescences much branched, leaves thin, edge slightly revolute

148. Leaves drying greenish or pale brown, usually c. 10 cm. long, fruit globose, c. 1-5 cm. diam.

149. Leaves drying reddish or blackish brown, less than 10 cm. long, fruit oblong, c. 1 cm. long

149. Leaves rounded or subcordate at base, not narrowed on to petiole (66) Haniffii.

150. Leaf bases narrowed on to petiole

151. Stems and inflorescence branches covered with reddish bristles, leaves oblong lanceolate cuspate, up to c. 3 cm. wide (89) setosa. Stems and inflorescence branches glabrous, leaves elliptic blunt, usually more than 4-5 cm. wide

152. Inflorescence branches with rough scaly or flaky bark (88) Curtisii. Inflorescence branches with smooth or striate bark

153. Primary nerves bold and raised below, much more prominent than secondaries or reticulations

154. Primary nerves faint or invisible below, or if raised, not much more prominent than secondaries and reticulations

Vol. XII. (1949).
154. Inflorescences not exceeding 2–5 cm. long, bark of young twigs flaky... (90) *pauper.*
Inflorescences 5 cm. or more long, bark of young twigs not flaky... 155.

155. Inflorescence lax, twigs terete, leaves 12–15 cm. long... (91) *Klossii.*
Inflorescence dense, twigs with raised lines, or more or less angled and winged, leaves usually 20 cm. or more long... (92) *valdevenosa.*

156. Apex of leaf rounded, blunt, or with short blunt abrupt point... 157.
Apex of leaf acute, acuminate, or caudate acuminate 160.

157. Inflorescence peduncle and branchlets very stout, as thick or almost as thick as twigs, leaves oblong orbicular... (50) *Kiahii.*
Inflorescence peduncle and branchlets slender, thinner than twigs, leaves not oblong orbicular 158.

158. Leaves elliptic to ovate, inflorescence usually below leaves; cultivated... (93) *Cumini.*
Leaves more or less obovate, inflorescences terminal or from upper axils; wild... 159.

159. Nerves and reticulations raised on upper surface of leaf, lower surface drying reddish brown, inflorescence dense... (95) *Muelleri.*
Nerves and reticulations almost invisible above, not raised, lower surface drying pallid brown, inflorescence lax... (99) *pallidula.*

160. Flowers very small, mature bud c. 2–3 mm. long, calyx rather abruptly contracted just below mouth... (125) *leucoxylon.*
Flowers larger, mature buds at least 4 mm. long and usually longer, calyx not so contracted 161.

161. Primary and secondary nerves and often reticulations raised and easily visible on upper surface of leaf... 162.
Nerves, at least secondaries and reticulations, obscure or invisible on upper surface of leaf 170.

162. Mature flower buds 9–10 mm. long, bark of older twigs scaly flaky... (100) *nemestrina.*
Mature buds not exceeding c. 7 mm. long, bark of twigs not scaly or flaky... 163.

Gardens Bulletin, S.
163. Leaves caudate acuminate, the cusp 1.5–2 cm. long, calyx and inflorescence branches minutely pustulate ... (77) pseudosyzygioides.
Leaves not caudate acuminate, or if so, cusp 1 cm. or less long, calyx and inflorescence not pustulate ... 164.

164. Leaves small, up to c. 6 × 3 cm., abruptly acuminate, petiole c. 5 mm. long (101) taipingensis.
Leaves larger, usually 8 cm. or more long and longer in proportion to width, or if smaller, not abruptly acuminate, petiole usually over 5 mm. long ... 165.

165. Reticulation close and raised on upper surface of leaf, as prominent as primary and secondary nerves ... (102) nigricans.
Reticulation not raised on upper surface, or if so much less prominent than primaries and secondaries ... 166.

166. Inflorescences usually below leaves, fruit ovicid, oblong; cultivated ... (93) Cumini.
Inflorescences terminal or from upper axils, fruit more or less globose; wild ... 167.

167. Upper surface of leaf drying paler than lower, pale brown or greenish brown ... (94) oblongifolia.
Upper surface drying darker than lower, reddish brown or blackish brown ... 168.

168. Calyx 3.5–4 mm. across mouth, pseudostalk distinct, rarely more than 2 mm. long (68) inophylla.
Calyx narrower, c. 2–2.5 mm. across mouth, pseudostalk longer than 2 mm. and well defined, or the calyx gradually narrowed into pseudostalk ... 169.

169. Calyx rather abruptly contracted into a pseudostalk 3–4 mm. long, tube not swollen near base, leaves usually over 10 cm. long (103) cerasiformis.
Calyx gradually narrowed into pseudostalk, and usually slightly swollen near base, leaves rarely more than 10 cm. long ... (80) tumida.

170. Mature flower buds 9–10 mm. long, bark of older twigs scaly flaky ... (100) nemestrina.
Mature buds not exceeding c. 8 mm. long, usually less, bark of twigs not scaly or flaky ... 171.

171. Leaves abruptly caudate acuminate ... 172.
Leaves not abruptly caudate acuminate ... 174.

Vol. XII. (1949).
172. Inflorescence branches filiform, inflorescence lax, flowers distant, calyx c. 4 mm. across mouth

Inflorescence branches not filiform, inflorescence many branched, more or less densely flowered, calyx c. 2 mm. across mouth

173. Calyx long narrowed into pseudostalk, often slightly swollen near base, not pustulate, cusp of leaf usually c. 1 cm. long

Calyx more or less abruptly contracted into pseudostalk, minutely pustulate, cusp of leaf usually 1-5-2 cm. long

174. Leaves small, usually less than 8 × 3-5 cm., bluntly acute or acuminate, branches of inflorescence paler than twigs, with almost smooth bark and strongly 4-angled, almost winged

Leaves usually longer and broader, apex acute, branches of inflorescence not paler than twigs, more or less striate, usually compressed, not strongly 4-angled or winged

175. Calyx 3-5-4 mm. across mouth, pseudostalk distinct, rarely more than c. 2 mm. long

Calyx narrower, c. 2-2.75 mm. across mouth, pseudostalk longer and well defined, or calyx gradually narrowing to pseudostalk

176. Bark of twigs drying pale brown to reddish brown, stamens 15-16 mm. long

Bark of twigs drying dark, almost black, stamens not more than c. 10 mm. long

177. Calyx rather abruptly contracted into a pseudostalk 3-4 mm. long, leaves usually over 10 × 5 cm.

Calyx gradually narrowed into pseudostalk, leaves usually shorter or narrower: if longer than 10 cm. then not exceeding 4 cm. wide, if wider than 5 cm., not reaching 10 cm. long

178. Leaves lanceolate, long acuminate, calyx not swollen near base

Leaves elliptic or oblong elliptic, shortly acuminate, calyx tube often swollen near base

179. Flowers very small, mature buds not exceeding c. 4 mm. long, usually 2.5-3 mm. long

Flowers larger, mature buds 5 mm. or more long

Gardens Bulletin, S.
180. Inflorescence branches covered with red scurf, flower buds more or less globular
 (88) *Curtisii* var. *minor*.
Inflorescence branches glabrous, buds not globular
 181.
181. Leaves more or less oblanceolate or obovate, apex rounded or with a short blunt point . 182.
Leaves not oblanceolate or obovate, apex acute or acuminate, sometimes very shortly or bluntly so
 185.
182. Primary nerves numerous, faint on lower surface and hardly more prominent than secondaries and reticulations, bark of twigs flaky
 (85) *cerina*.
Primary nerves few, spaced, distinct from secondaries and reticulations even if faint, bark of twigs not flaky .. 183.
183. Leaves small, not more than c. 4 cm. long, primary nerves 3–4 pairs . (108) *myriantha*.
Leaves larger, usually over 5 cm. long, primary nerves more than 4 pairs .. 184.
184. Bark of twigs dark, red or brown, bracteoles persistent .. (107) *microcalyx*.
Bark of twigs almost white, bracteoles not persistent .. (106) *pseudosubtilis*.
185. Primary nerves close and numerous, not more prominent than secondaries, or very obscure or invisible .. 186.
Primary nerves not more than about 15 pairs, usually less, spaced, and more prominent than secondaries below, even if faint .. 187.
186. Leaves small, up to 6×2.5 cm., nerves almost invisible .. (86) *avenis*.
Leaves large, usually 10×4 cm. or more, nervation raised and easily visible on both sides
 (69) *Bernardi*.
187. Primary nerves and reticulations strongly raised on lower surface of leaf, intramarginal nerve 2–5 mm. from margin . (109) *Kunstleri*.
Primary nerves not or only slightly raised below, intramarginal nerve faint or none .. 188.
188. Inflorescence very short and compact, not reaching half length of leaves, with very short branchlets, leaves with strongly recurved margins, youngest twigs 4-angled; mountain shrub
 (113) *alyxifolia*.

Inflorescence spreading, half as long as leaves or longer, branchlets slender, long, margins of leaves not strongly recurved, youngest twigs terete or compressed; trees, usually lowland 189.

189. Bracteoles persistent, although minute, bark of twigs dark ... (107) *microcalyx*. Bracteoles not persistent, bark of twigs pale (106) *pseudosubtilis*.

190. Inflorescence branches stout, almost as thick as twigs, ultimate branchlets not exceeding c. 1 cm. long, inflorescence compact, not spreading 191. Inflorescence branches slender, thinner than twigs, ultimate branchlets usually over 1 cm. long, inflorescence spreading ... 195.

191. Leaves almost sessile, drying greenish or pale brown ... (37) *viridescens*. Leaves distinctly petioled, drying brown or red 192.

192. Primary nerves very fine on under surface of leaf, or invisible, intramarginal obscure or not more than 1 mm. from margin ... 193. Primary nerves distinct below, intramarginal distinct and 2–5 mm. from margin ... 194.

193. Leaves rather thick, more or less caudate acuminate, inflorescences almost sessile (63) *Pearsoniana*. Leaves thick, not caudate acuminate, inflorescences peduncled ... (39) *inasensis*.

194. Leaves nearly as broad as long, very shortly narrowed to base, apex with very short broad point ... (50) *Kiahii*. Leaves narrowly elliptic or oblong, more than twice as long as broad, base cuneate, apex more or less acute ... (50) *Kiahii* var. *angustifolia*.

195. Leaves almost or quite sessile, or petioles less than 5 mm. long ... 196. Leaves distinctly petioled, petioles usually c. 1 cm. long or more ... 197.

196. Inflorescence branches with smooth bark, strongly 4-angled, almost winged, leaves drying reddish or brownish; lowland plant ... (73) *oleina*. Inflorescence branches terete or slightly compressed, bark striate, leaves drying greenish or pale brown; mountain plant ... (37) *viridescens*.

Gardens Bulletin, S.
43

197. Inflorescences usually below leaves, fruit ovoid oblong, petioles often 2 cm. long; cultivated

(93) Cumini.

Inflorescences terminal or from upper axils, fruit more or less globose, petioles rarely reaching 2 cm.; wild...

198. Apex of leaf with very short abrupt point, margin crenulate...

(114) pseudocrenulata.

Apex of leaf acute or acuminate, margin entire...

199. Nervation invisible or very obscure on lower surface of leaf...

Nervation, at least primary nerves, easily visible below...

200. Inflorescence branches with smooth bark, strongly 4-angled; lowland tree...

(73) oleina.

Inflorescence branches with striate bark, terete or slightly compressed; mountain tree...

(39) inasensis.

201. Inflorescence branches with smooth bark, sharply 4-angled...

Inflorescence branches with striate bark, terete or more or less compressed, not sharply 4-angled, or if angled, bark not smooth...

202. Calyx tube often slightly swollen near base, c. 5 mm. long, inflorescence branches usually ascending, leaves usually c. 4 cm. broad, elliptic oblong, oblong lanceolate, or sometimes obovate...

(80) tumida.

Calyx tube not swollen at base, c. 3-3.5 mm. long, inflorescence branches often horizontal, leaves usually narrow lanceolate, rarely more than c. 3 cm. wide...

(73) oleina.

203. Primary nerves spaced and sufficiently distinct from secondaries on under surface of leaf...

Primary nerves close together, numerous and hardly or not distinguishable from secondaries...

204. Inflorescences dense, many branched, terminal, rarely axillary, branches ascending...

205. Inflorescences lax, few branched, terminal and axillary, branches often horizontal...

(103) cerasiformis.

206. Leaves drying dark, usually blackish brown, more or less acuminate, calyx usually c. 6 mm. long...

(68) inophylla.

Leaves drying pale brown, bluntly acute, calyx not more than 5 mm. long...

(50) Kiahii var. angustifolia.

Vol. XII. (1949).
206. Mature flower buds less than 5 mm. long, rather abruptly narrowed at base, the fine nerves and reticulations raised on both surfaces of leaf (69) *Bernardi*.

Mature buds more than 5 mm. long, gradually narrowed to base, nerves and reticulations hardly raised above 207.

207. Calyx tube usually slightly swollen near base, leaves elliptic oblong to obovate, rarely more than 10 cm. long (80) *tumida*.

Calyx tube not swollen near base, leaves narrowly ovate or elliptic, usually over 10 cm. long (68) *inophylla*.

GROUP 4

Calyx tube narrowly funnel shaped, tapering evenly from apex to base, but often contracted at base into a pseudostalk, glandular, pustulate, or deeply wrinkled, often pruinose or glaucous, calyx lobes rather conspicuous, broad, not spreading but more or less incurved or continuing the line of the calyx tube.

1. Flowers in rather dense heads or condensed panicles, conspicuously bracteate, the bracts often papery, and as long as or longer than flowers 2.

Bracts small and inconspicuous or none 5.

2. Leaf bases broad and more or less cordate, primary nerves strongly raised below, intramarginal nerve conspicuous, petiole strongly transversely wrinkled (115) *tetraptera* var. *pseudotetraptera*.

Leaf bases narrowed on to petiole, or more or less rounded, never cordate, primary nerves usually faint or invisible below, intramarginal nerve obscure, petiole not or only slightly transversely wrinkled 3.

3. Flowers in condensed panicles .. (116) *polita*.

Flowers in sessile heads 4.

4. Leaves thin, up to c. 6 \(\times \) 2.5 cm., often strongly black dotted below, calyx not pustulate (118) *jasminifolia*.

Leaves thick, up to c. 3 \(\times \) 1.75 cm., not black dotted below, calyx minutely pustulate (119) *nitidula*.

Gardens Bulletin, S.
5. Leaves with primary nerves and intramarginal nerves strongly raised below, twigs with conspicuous wavy wings ... (115) tetraptera.
Primary and intramarginal nerves obscure and faint below, twigs angled or not, but without wavy wings ... 6.

6. Leaves small, very thick, not exceeding c. 2-5 cm. long ... 7.
Leaves larger, not very thick, usually at least 4 cm. long and often longer ... 8.

7. Leaves broadly ovate, usually c. 2-5 cm. broad, almost sessile, base cordate, calyx not or only slightly pustulate ... (120) clypeolata.
Leaves narrower, not more than c. 1-5 cm. broad, usually less, usually distinctly petioled, not cordate, calyx conspicuously pustulate (121) Stapfianna.

8. Calyx conspicuously pustulate ... (122) spicata.
Calyx wrinkled, not pustulate ... 9.

9. Inflorescence panicled, calyx c. 5–6 mm. long, glaucous ... (123) grata.
Flowers in fascicles, calyx c. 1 cm. long, not glaucous ... (117) tecta.

GROUP 5

Calyx tube elongate, usually 1 cm. or more long (except leucoxylon and flosculifera), fusiform, or gradually narrowed from apex to base, or clavate or pegshaped (suddenly contracted into a long tapering pseudostalk).

1. Calyx small, c. 2-5 mm. long, fusiform, cotyledons fused ... (126) flosculifera.
Calyx longer, cotyledons free ... 2.

2. Calyx not exceeding 1 cm. long ... 3.
Calyx over 1 cm. long ... 6.

3. Calyx clavate, gradually narrowed to base, leaves more or less orbicular, cordate, apex rounded or retuse; shrub ... (124) spissifolia.
Calyx pegshaped, abruptly contracted into a long pseudostalk, leaves not orbicular, narrowed at base, apex acute or acuminate; trees ... 4.

4. Calyx c. 3–4 mm. long, inflorescence spreading, fruit globular, bark of twigs pale (125) leucoxylon.
Calyx c. 6–10 mm. long, inflorescences not spreading, fruit elongate, bark of twigs dark ... 5.

5. Leaves rarely exceeding c. 6 cm. × 2.5 cm., nervation almost invisible, calyx more or less pustulate, bark of trunk papery flaky (127) attenuata.

Vol. XII. (1949).
Leaves larger, up to c. 14 cm. × 6 cm., primary nerves below usually easily visible, calyx smooth, bark of trunk not or only slightly papery flaky (129) rugosa.

6. Calyx tube fusiform—contracted below lobes and swollen about ovary (132) virens. Calyx tube pegshaped or clavate 7.

7. Apex of calyx tube much inflated and more or less globular (130) fusticulifera. Apex of calyx tube not inflated or globular 8.

8. Inflorescences very short, fascicled, almost or quite sessile 9. Inflorescences peduncled, not fascicled 11.

9. Leaves usually less than 7 cm. × 2·5 cm., primary nerves below indistinct or invisible (133) pseudoclaviflora. Leaves usually over 9 cm. × 3·5 cm., primary nerves below spaced and distinct from secondaries even if slender 10.

10. Stamens 5–10 mm. long, calyx tube c. 1·5 cm. long, bark of trunk greyish, not fissured (134) claviflora. Stamens not reaching 4 mm. long, calyx tube less than 1·5 cm. long, bark of trunk reddish and fissured (129) rugosa.

11. Leaves with very fine close nervation raised on both surfaces, primary nerves close together, not distinguishable from secondaries (128) rhamphiphylla. Primary nerves distant and distinct from secondaries, nerves not or only slightly raised above 12.

12. Calyx tube strongly wrinkled, mouth of calyx opening widely after anthesis (131) napiformis. Calyx tube nearly smooth, mouth contracted below lobes, not opening widely (129) rugosa.

Widely cultivated in the Malay Peninsula. Malay name, *Jambu Bol*.

A medium sized tree. Twigs stout, compressed or angled or nearly terete, the youngest with brown bark, the older with pale smooth bark. Leaves usually large, but variable in shape and size, from oblong oblanceolate to oblong elliptic or somewhat obovate, coriaceous, drooping, reaching c. 35–36 cm. long and 18 cm. broad, apex obtuse or shortly and abruptly acute, base cuneate or long narrowed;

Fig. 6. a, *E. malaccensis*; b, *E. auriculata*.

upper surface drying pale brown or olivaceous brown to dark reddish brown, lower surface pale brown to pale reddish brown, with scattered black dots; midrib rather shallowly impressed above, prominent below; primary nerves c. 10–14 pairs, 1–2.5 cm. apart, usually more or less impressed and inconspicuous above, prominent below, obliquely ascending, nearly straight or curving up to a conspicuous looped intramarginal nerve 0.5–1.5 cm. from the leaf margin, with one or two fainter series of loops closer to the margin; secondaries much less prominent than primaries below, reticulations lax and usually faint; petiole stout, 1 cm. or less long.

Flowers crimson pink, in short few flowered fascicles from twigs below the leaves, sessile; *calyx* green, c. 3 cm. long and 1.5 cm. across mouth, excluding lobes, obconic, the upper part more or less cupular, narrowed into a very stout pseudostalk c. 1 cm. long which is often obscurely ribbed; lobes 4, unequal, suberect, persistent, broad and rounded, 1.2–1.5 cm. across, the smaller c. 5–6 mm. tall, the larger 9–10 mm. tall; *petals* 4, free, orbicular-spathulate with a broad short claw, thick textured, gland dotted, c. 17 cm. tall; *stamens* numerous, filaments slender, flattened below, terete above, reaching c. 3 cm. long, anthers oblong, a little more than 1 mm. long, connective gland small and inconspicuous; *style* stout, subulate, reaching c. 3.5 cm. long; *ovary* 2-celled, multiovulate.

Fruit oblong or obovoid oblong, 4 cm. long and 2.5 cm. diam., but often larger, white or greenish white, wholly or partially overlaid with pink, apex with the 4 enlarged incurved green calyx lobes and long pinkish style; pericarp thick, white, dryish, somewhat fibrous and pithy; seed depressed globose, c. 1.5–2 cm. diam.; testa brownish, thick, toughly fibrous, adhering closely to the white, glistening very rugose surface of the cotyledons; cotyledons nearly equal or very unequal, inner faces green tinged pink, attached to the hypocotyle by broad stalks twisted through 90 degrees; hypocotyle stout, reaching periphery of the seed. Germination hypogean.

2. *Eugenia tekuensis* nom. nov.

Pahang: Tahan Woods, Ridley s.n.; Kuala Teku, Ridley 16266 (type); Sungai Teku, SFN 31710 (Kiah).

Distrib: Endemic.

Gardens Bulletin, S.
A small slender *tree* 8–13 metres tall, bark smooth, dark brown. Youngest *twigs* slender, with smooth brown bark. *Leaves* coriaceous, elongate, oblong lanceolate, up to c. 44 cm. long and 7 cm. broad, gradually acuminate in the upper 1/3 or 1/4, or sometimes from near the base, apex

Fig. 7. *E. tekuensis*, apex and base of leaf.

acute or subacute, base broad, sometimes slightly narrowed, rounded and cordate; petiole very short, swollen and wrinkled; midrib impressed above, prominent below, rounded and more or less longitudinally striate; primary nerves 25–40 or more pairs, slightly raised and indistinct above, raised and slender below but distinct, about 1 cm. apart, nearly horizontal or at various angles to the midrib, curving up slightly to a somewhat faint intramarginal nerve c. 2–4 mm. from leaf margin; secondaries and reticulations faint above, secondaries below almost as conspicuous as primaries and sometimes not easy to distinguish from them, reticulations lax and faint; upper surface drying reddish or blackish brown, lower surface glaucous (fide Ridley), reddish brown in SFN 31710.

Inflorescences from tubercles on the trunk, short, few flowered, sessile or on a peduncle c. 2 cm. long, the peduncle and branchlets slender, 4-angled with brown striate bark. Calyx c. 1.2 cm. long, c. 8 mm. across mouth in full grown bud, obconic, narrowed rather abruptly into a slender pseudostalk 2–5 mm. long, pedicel varying between the same limits; sepals 4, persistent, broadly ovate, rounded, the two inner ones c. 6 mm. across at base and 3 mm. tall, the outer ones smaller; petals 4, ovate rotund, unequal, thin textured, the larger nearly 1 cm. across; stamens numerous, slender, up to c. 2.5 cm. long, anthers small, oblong, with a rather conspicuous dark coloured connective gland; style slender, about the same length as the stamens; ripe fruit unknown.

Ridley describes (in F.M.P.) the flowers as entirely crimson. His field note on the type says they are scarlet. Very young fruits on SFN 31710 are described as pink.

Kelantan: Bukit Bunga Raya, Forest Dept. FMS 33413.

E. "doligophylla" Koord. & Valet. is a misprint or mistake for "dolichophylla". The name is a later homonym, having been used by Kiaerskou in 1893 for a Brazilian species. Koorders & Valeton's name was a new name for Jambosa confusa Bl., which in its turn was part of Jambosa lanceolata Korth., regarded by Blume as a mixture and split by him into three parts—J. insignis, J. Korthalsii and J. confusa. In 1920 Gagnepain gave the name E. malayana to Jambosa confusa Bl., but did not cite E. dolichophylla Koord. & Valet.

Gardens Bulletin, S.
Koorders and Valeton do not give a fresh description of the species, but merely repeat Blume's description. In their figure in Atlas Baumarten v. Java, where the spelling of the specific name is corrected, the inflorescence appears not to be terminal, as all descriptions give it, but cauliflorous or ramiflorous, and the figure, therefore, is more like E. tekuensis.

As no material of E. malayana has been available for comparison, the specimen cited is placed here with some doubt. A short description of it is given below.

A tree c. 7–8 metres tall. Leaves narrowly oblong, c. 44 cm. long and 7 cm. broad, tapered gradually from about middle to apex, base cordate, upper surface drying blackish brown, lower surface red brown; midrib impressed above, prominent and rounded below; primary nerves c. 30 pairs, 1–2 cm. apart, slightly raised and rather faint above, prominent below, the basal ones nearly horizontal, the upper ones curving up, joining a nearly straight, prominent intramarginal nerve 3–5 mm. from leaf margin, with a much fainter loop close to the margin; secondaries and lax reticulations distinct below, much less prominent than primaries; petiole short and stout, longitudinally grooved, less than 5 mm. long.

Inflorescences terminal, clustered, up to c. 2 cm. long, 3-5-flowered, rachis rather stout, 4-angled and grooved, drying dark; flowers sessile or on short stout pedicels, buds 1-7–1-8 cm. long, obovoid, calyx c. 1-5 cm. long, campanulate, narrowed rather gradually to a rather short stout pseudo-stalk; lobes 4, broad, ovate, rounded, 4–5 mm. tall; petals pellucidly gland dotted.

4. Eugenia perakensis King, Mat. F.M.P., No. 12, 81 (1901); Ridl., F.M.P., I, 726, excl. syn. (Fig. 8).

Perak: sine loc., Scortechini 185; Larut, Kunstler 5595, type collection; Sungai Krian Estate, Bagan Serai, at sea level, SFN 34481 (Spare).

Selangor: Circular road Reserve, Kuala Lumpur, Forest Dept. FMS 1576, 5750; Klang river, Forest Dept. FMS 43732; Sungai Pelek, Sepang, Denny s.n.

Distrib: Endemic.

A straggling tree, sometimes in secondary growth on river banks where at high tide the water reaches the base of the trunk; bark silvery or very pale brown, flaky, inner bark pallid buff. Youngest twigs with smooth brown bark, conspicuously ridged, stout, older twigs stout, terete, bark whitey-brown or pale brown, flaky or not. Leaves in pairs or threes, thickly coriaceous, oblong elliptic or oblong obovate, apex blunt or subacute, narrowed gradually to the more or less oblique, cordate, sometimes amplexicaul base,
Fig. 8. *E. perakensis.*

Gardens Bulletin, S.
very variable in size, reaching c. 33 cm. long and 12 cm. broad, upper surface drying dull brown, smooth, punctate, lower pale brown to reddish brown; midrib slightly impressed above, very prominent and rounded below; primary nerves c. 12–14 pairs, 2–5 cm. apart, ascending and curving up to interarch 5–10 mm. from leaf margin, with a very much fainter series of arches much closer to margin, impressed or channelled and faint above, very prominent below, secondaries and reticulations much less prominent but quite distinct, the reticulations lax; petiole very short and stout.

Inflorescences usually from branches, always below leaves but sometimes from axils of fallen leaves; flowers 4–8 in very short racemes, peduncle usually less than 1 cm. long, or fascicled, pedicels very variable, up to c. 2 cm. long, subtended by a pair of triangular acute bracts c. 1-5 mm. long, and with a pair of similar but slightly broader and blunter bracteoles at apex; calyx campanulate, narrowed to a short pseudostalk, tube deep pink, c. 1-5 cm. long and 1·2–1·3 cm. wide at mouth; lobes 4, semi-ovariform, persistent, the two inner larger than others, c. 5 mm. high and 7 mm. wide; petals 4, free, subpersistent, pink, broadly ovate with truncate base, c. 1 cm. high and 8 mm. wide; stamens very numerous, filaments white, c. 2 cm. long, anthers narrowly oblong, 1–1·5 mm. long, connective gland very inconspicuous; style c. 3-5 cm. long; ovary 2-celled with many ovules in each cell.

Fruit c. 2 cm. diam., globose with truncate apex, smooth, deep purplish pink slightly tinged with green, apex with enlarged calyx rim and remains of calyx lobes and style, c. 1·5 cm. diam., the excavation shallow, white tinged pink; pericarp pithy leathery, thin; seeds 3, the testa often peeling off with pericarp; cotyledons pale orange yellow, superposed, stalked, the hypocotyle rather long, pink.

Malay name—Kayu Kati Lima.

Cultivated in the Malay Peninsula under the Malay names *Jambu Ayer, Jambu Chili*. Perhaps a native of Southern India.

A bush or small tree up to c. 10 m. tall, usually much branched, bark smooth, grey. Twigs terete with smooth brown bark. Leaves decussate, usually ovate oblong or elliptic oblong, up to c. 20 cm. × 10 cm., apex shortly and broadly acute, or blunt, base rounded and usually slightly cordate, almost sessile, petiole less than 5 mm. long; upper surface dull green in life, drying reddish to blackish, paler below, black dotted, drying reddish brown; midrib channelled above, boldly raised below; primary nerves up to about 10 pairs, 1–2 cm. apart, ascending, somewhat impressed above when fresh, more or less raised and slender when dry, raised below, meeting in a looped intramarginal nerve c. 5–7 mm. from leaf margin, with a much finer and fainter loop nearer the margin; secondaries and reticulations faint.

Inflorescences axillary, terminal, or from immediately below leaves, shorter than leaves, c. 5 cm. long, peduncle up to 2 cm. long or almost none, with or without a pair of ascending branchlets near the base c. 2–2.5 cm. long, each with 1–3 flowers, the central rachis usually with 5 flowers; rachis and branchlets green in life, and slightly angled, dark brown and striate when dry; bracts and bracteoles small and fugacious. Flowers white, greenish or pinkish, calyx including pseudostalk c. 1.4 cm. long, hemispherical or oblong above, abruptly contracted into a pseudostalk c. 5 mm. long, lobes 4, erect, not reflexed after anthesis, broadly ovate rounded, c. 4 mm. across at base and 3 mm. high, the calyx tube slightly contracted below lobes; petals 4, sub-persistent, free, reflexed after anthesis, subrotund, unguiculate at base, c. 5 mm. diam.; stamens numerous, up to c. 1.5 cm. long, filaments slender, subulate, anthers small, elliptic, the connective gland very small and inconspicuous; style yellowish, c. 1 cm. long, stouter than filaments; ovary 2-celled, many ovuled.

Fruit shining white or pink, up to c. 4 cm. across, turbinate with flattened top, the 4 much enlarged and fleshy calyx lobes incurved over and almost hiding the apical excavation, flesh crisp and juicy, often seedless or with several seeds. Seed very like that of E. javanica, with thick closely adhering pithy testa, surface of cotyledons green, rugose, the internal structure the same as in E. javanica, E. malaccensis etc., the cotyledons attached to the hypocotyl by broad stalks.

6. Eugenia auriculata Ridl. in Journ. Roy. As. Soc. Str. Br., LXI, 7 (1912); F.M.P., I, 726. (Fig. 6a).

Distrib: Endemic.

? A tree. Branchlets very stout, terete, with smooth or slightly cracked greyish or brownish bark. Leaves very

Gardens Bulletin, S.
coriaceous, narrowly elliptic, up to c. 23 cm. long and 8 cm. broad, apex apparently shortly acute, lower half of lamina gradually narrowed to a cordate-auriculate base; upper surface drying lead colour, lower surface brown to blackish brown; petiole very stout, short, black, less than 5 mm. long; midrib sunk in a narrow channel above, boldly raised below, blackish and striate; primary nerves c. 13–14 pairs, somewhat raised and finely channelled above, rather conspicuous, raised below and somewhat inconspicuous, running straight from midrib and joining an inconspicuous intramarginal nerve c. 3–4 mm. from leaf margin; secondaries almost as conspicuous as primaries but distinguishable from them, reticulations very faint; upper surface of leaf slightly polished, punctate with scattered black dots, lower surface dull, not punctate.

Inflorescences terminal or axillary, 2–3 cm. long, on short, very stout peduncles c. 1 cm. long, or almost sessile, branchlets very short, stout, with blackish or brownish wrinkled bark; flowers in threes, white (fide Ridley), sessile; calyx campanulate, c. 1-4 cm. long and 1-2 cm. across mouth, base narrowed, pseudostalk none, or very short and stout, not exceeding 2 mm. long when present; calyx lobes apparently soon deciduous, none seen attached to flowers, semiobicular, strongly gland dotted, 5–6 mm. diam; petals free, semiobicular, c. 5 mm. diam., finely gland dotted; stamens numerous, c. 2-5 cm. long, slender, with small anthers; style slender, c. 3 cm. long. Fruit unknown.

Very little material is known of this species. It is close to E. perakensis but appears sufficiently distinct in the less prominently nerved leaves, terete, not angled twigs and in the terminal or axillary inflorescences on short peduncles.

7. Eugenia quadrata King, Mat. F.M.P., No. 12, 86 (1901); Ridl., F.M.P., I, 730. (Fig. 9b).

Perak: Larut, Künstler 5547 (type collection).

Distrib: Endemic.

A tree up to c. 10 m. tall. Twigs stout, 4–5 mm. diam., 4-angled and narrowly winged, bark smooth, brown; Leaves coriaceous, oblong, much narrowed to the acuminate apex, base slightly narrowed, rounded and cordate, up to c. 25 cm. long and 7-5 cm. broad; upper surface drying brown or olivaceous brown, smooth and punctate, lower surface darker brown or reddish brown, not glandular; midrib impressed above in a narrow channel, raised below; primary nerves up to c. 25 pairs, 5–10 mm. apart, obscure above, raised and slender below, almost horizontal and meeting in a fine intramarginal nerve 2–4 mm. from leaf margin, with

Vol. XII. (1949).
a much finer loop closer to margin; secondaries and reticulations fine, raised below and distinctly less conspicuous than primaries; petiole 2–3 mm. long, swollen.

Fig. 9. a, *E. aqua*; b, *E. quadrata*.

Inflorescences terminal or axillary, much shorter than leaves, solitary or fascicled in groups of 3 or 4, 3-flowered, branchlets compressed and striate; *flowers* white, sessile, *calyx* tube c. 12 cm. long and 5 mm. across mouth, campanulate, narrowed rather abruptly or gently into

Gardens Bulletin, S.
a rather slender pseudostalk c. 4 mm. long, lobes 4, broadly ovate triangular, rounded, c. 3 mm. across at base and 2 mm. tall, persistent and eventually reflexed; petals 4, free, orbicular, c. 5 mm. diam.; stamens numerous, c. 5 mm. long, filaments very slender, subulate, anthers oblong with a dark conspicuous connective gland; style much stouter than filaments, c. 1 cm. long. Fruit unknown.

The only specimens of this species are very scanty and poor, yet it seems distinct from all others, especially in the oblong broad based leaves with a long tapering apex, the stout angled and winged twigs and the short crowded inflorescences.

8. Eugenia scalarinervis King, Mat. F.M.P., No. 12, 87 (1901). (Fig. 10).

Perak: Gopeng, 300-500 feet, Kunstler 8200 (syntype); Parit Forest Reserve, Forest Dept. FMS 34227.

Distrib: Lumut, Ridley 3095 (syntype).

A tree c. 10 m. tall. Branchlets stout, 8 mm. or more in diam. with dull red brown smooth or finely striate and lenticellate bark. Leaves very coriaceous, large, elliptic ovate, subacute, base cordate, rounded, c. 35 cm. × 20 cm., upper surface drying dull brown or blackish brown, minutely and closely punctate, lower surface paler, not, or very sparsely glandular; midrib impressed above, bold and rounded below; primary nerves up to c. 30 pairs, impressed above, very prominent below, 1-2 cm. apart, ascending slightly and running nearly straight to a well marked looped intramarginal nerve 5-10 mm. from leaf margin, with a much fainter loop nearer the margin; reticulations wide and few, impressed above, raised below but much less prominent than primaries; petiole up to c. 1 cm. long, very stout.

Inflorescences terminal, few flowered, short and contracted; calyx tube magenta coloured (fide Kunstler), c. 2 cm. long, contracted at base into a pseudostalk 3-4 mm. long, pedicel about as long, lobes 4, broadly triangular, c. 4 mm. tall; petals not seen; stamens 5-7 mm. long. Style c. 3 cm. long. Fruit (apparently unripe) globular ovoid, smooth, crowned by the wide calyx tube c. 5 mm. tall, fringed by the persistent and more or less enlarged calyx lobes.

Ridley reduces this striking species to E. perakensis, but although only rather poor material of it is known, it is quite distinct in the larger broader leaves with a very broad base, the nerves deeply impressed on the upper surface and prominent below, the primary nerves 1-2 cm. apart, and in the terminal inflorescence. In E. perakensis the nerves

Vol. XII. (1949).
Fig. 10. *E. scalarinervis*.

Garden's Bulletin, S.
are not deeply sunk above, the reticulations are only slightly raised below, the primary nerves are 2–4 cm. apart and the leaves are more or less narrowed to the base. The inflorescence is below the leaves or on the trunk.

9. **Eugenia porphyranthera** Ridl. in Journ. Roy. As. Soc. Str. Br., LXI, 8 (1912); F.M.P., I, 727. (Fig. 12a).

Selangor: Bukit Kutu, **Ridley 7313** (type collection).

Distrib: Endemic.

A tree (fide Ridley). Twigs very slender, terete with faint raised lines between the nodes, the youngest parts 4-angled, bark smooth, pale brown. *Leaves* broadly lanceolate or somewhat ovate lanceolate, up to 15 cm. × 5 cm., long tapered to an acuminate apex with rounded tip, base rounded and slightly cordate; petiole c. 4 mm. long, somewhat swollen, with black wrinkled bark; midrib impressed above, bold below; *primary nerves* 12–16 pairs, fine above and raised above the leaf surface in channels, giving the effect of being impressed, slender below but raised and conspicuous, running straight to a conspicuous looped intramarginal nerve c. 4–5 mm. from leaf margin, with a much fainter intramarginal c. 1 mm. from margin and traces of a third very close to margin; secondaries and reticulations very fine and raised above, more conspicuous below; both surfaces drying dull, the upper to a lead colour or dark blackish brown, the lower similar, when dark brown with very minute crowded pale gland dots.

Inflorescence 2-flowered (3-flowered, fide Ridley) on a very short peduncle, terminal; *calyx* obconic, c. 1 cm. long, 7–8 mm. across mouth, on a pedicel c. 3 mm. long, narrowed rather abruptly to a pseudostalk c. 3 mm. long; in the material available the calyx lobes are apparently large, orbicular, semipersistent, strongly gland dotted; *petals* not seen; *stamens* numerous (purple fide Ridley), c. 1 cm. long; anthers small, oblong; *style* c. 1.5 cm. long. *Fruit* unknown. Known only from one collection but distinct in the tapered leaves and very short few flowered terminal inflorescences.

10. **Eugenia siamensis** Craib in Kew Bull. (1912) 153; Fl. Siam. Enum., I, 661; Gagnep. in Fl. Gen. Indo-Ch., II, 843; Ridl., F.M.P., I, 726. (Fig. 11a).

Kelantan: base of Gunong near Kota Bahru, **Ridley s.n.**

Kedah: Koh Mai Forest Reserve, **SFN 35183** (Kiah).

Perlis: Kaki Bukit, **SFN 35264** (Kiah).

Distrib: Siam.

A shrub or small tree up to c. 3 m. tall. Twigs slender, terete, smooth, with pale brown or reddish brown bark. *Leaves* oblong lanceolate or ovate-lanceolate, chartaceous,

Fig. 11. a, *E. siamensis*; b, *E. Jambos*; c. *E. Scortechinii.*

Gardens Bulletin, S.
apex acuminate, acute, base narrowed and rounded, or cuneate, up to 18 cm. × 5-5 cm.; upper surface drying dull greenish or brownish, eglandular, lower surface paler, very sparsely glandular, finely wrinkled; midrib more or less impressed above, prominent below; primary nerves up to c. 10 pairs, c. 1 cm. apart, slightly raised and inconspicuous above, raised and distinct below, more or less ascending or curving gently to a shallowly looped intramarginal nerve 3-7 mm. from leaf margin, secondaries and reticulations obscure above, very fine below; petioles 5-8 mm. long, rather stout and wrinkled.

Inflorescences terminal, 3-flowered, peduncle rather stout, angled, c. 5 mm. long, the pedicels slightly less stout, 3-5 mm. long; calyx tube funnel shaped, c. 1.5-2 cm. long, 1-3 cm. across mouth, gradually narrowed to a very short stout pseudostalk 2-3 mm. long, lobes 4, broad and rounded, persistent, c. 1 cm. across at base and 5-7 mm. tall; petals 4, free, conspicuously gland dotted, orbicular, c. 1.7 cm. diam.; stamens numerous, c. 3 cm. long, filaments slender, anthers linear oblong, c. 1 mm. long, connective gland apparently none; style stouter than stamens, 4-5 cm. long; fruit globose. c. 3 cm. diam. (probably unripe), apex rather widely and shallowly excavate, bearing the persistent calyx lobes and style.

This species is perhaps a little too close to E. Jambos but it differs from it mainly in the broader leaves with a less narrowed base and in the fewer primary nerves and less conspicuous reticulation. The flowers are described as red in two of the collections cited above. Ridley describes them as rose at the base and white above, the stamens rose pink. The flowers of E. Jambos are normally white.

11. Eugenia oreophila Ridl. in Journ. Roy. As. Soc. Str. Br., LXI, 9 (1912); F.M.P., I, 753; E. jugalis Ridl. in Journ. F.M.S. Mus., VI, 47 (1915); F.M.P., I, 727. (Fig. 12b).

An endemic species not uncommon on hilltops and in ridge forest in Perak, Pahang and Selangor, from 4,000-5,500 feet. The type is Dennys s.n. from Ulu Šemangkok, Selangor.

A shrub or bushy tree up to c. 8 m. tall. Twigs rather slender, terete, with smooth dark brown bark, the youngest parts paler and often densely lenticellate. Leaves coriaceous, variable in size and shape, usually broadly elliptic, sometimes obovate or nearly orbicular, from c. 2.5-9 cm. long and 1.5-5 cm. broad, apex usually rounded, sometimes retuse or very shortly and broadly acute, base narrowed rather abruptly; petiole rather slender, drying black and wrinkled, deeply and narrowly channelled above, up to c. 1 cm. long; midrib impressed above, bold below;

Vol. XII. (1949).
primary nerves from about 4 pairs in small leaves to 9 or 10 in large leaves, from 5–10 mm. apart, raised on upper surface and very slightly more distinct than secondaries and reticulations, raised below and just distinguishable from secondaries, meeting in a looped intramarginal nerve 3–4 mm. from leaf margin; upper surface often shining, greenish brown, lower dull and paler, minutely black dotted.

Inflorescences terminal, up to c. 4-5 cm. long but usually shorter, few flowered, branchlets slender, terete; calyx tube more or less campanulate, c. 1 cm. long, including pseudostalk, c. 5 mm. diam. below lobes, narrowed rather abruptly into a slender pseudostalk c. 3–4 mm. long; lobes 4 broad and rounded, varying in size, one usually considerably larger than the others; petals 4, free, obovate orbicular, c. 8 mm. tall and 7 mm. broad; stamens numerous, c. 1-5 cm. long, anthers oblong, connective gland inconspicuous; style 1-5 cm. long.

Fruit globose, c. 1.5–1.75 cm. diam., dull brown or blackish brown, surface rugulose when dry; apical umbilicus shallow, c. 7-5 mm. diam., calyx rim very short, bearing the shrivelled lobes which persist until the fruit is ripe or nearly so, style base stout, c. 2 mm. long; pericarp probably fleshy and somewhat fibrous; seed 1, testa thick, brown, adhering to cotyledons; cotyledons nearly equal, gland dotted, inner faces plane or concave, attached to hypocotyle near their centres.

There is no significant difference to be found between the types of E. oreophila and E. jugalis, although Ridley puts them in widely separated sections of his key. The petals in both are free.

Widely cultivated in the Malay Peninsula and other tropical countries. The Rose Apple or Jambu Mawar.

A bush or small tree. Twigs angled or compressed, eventually subterete, drying brown. Leaves coriaceous, lanceolate or oblong lanceolate, long tapered to the acuminate apex, base long narrowed, up to c. 20 cm. long.
and 5 cm. broad, both surfaces drying greenish brown to reddish brown and obscurely pustulate; petiole up to c. 1 cm. long; midrib impressed above, prominent below; primary nerves c. 10–15 pairs, 1 cm. or more apart, slightly raised and rather faint above, elevate and distinct below, ascending and curved up to a distinct, shallowly looped sometimes interrupted intramarginal nerve 3–5 mm. from leaf margin, with usually a much fainter loop nearer the margin; secondaries and reticulations raised on both surfaces, often obscure above, distinct below but less prominent than primaries.

Racemes terminal, shorter than leaves, few flowered, the rachis rather stout, 4-angled; flowers solitary on pedicels up to c. 1-5 cm. long, fragrant, 7–8 cm. across stamens; calyx tube pale greenish or pale yellowish, obconic, c. 1-5 cm. long, c. 1 cm. across mouth (excluding lobes), narrowed to base and slightly contracted into a stout not well defined pseudostalk 2–3 mm. long; lobes 4, persistent, reflexed after anthesis, broadly ovate rounded, somewhat unequal, the 2 larger c. 1 cm. across at base and 6 mm. tall; petals 4, white, reflexed after anthesis, orbicular, concave, gland dotted, c. 1-5 cm. diam; stamens numerous, filaments slender, terete, up to c. 4 cm. long, cream white, anthers oblong, c. 1-2 mm. long, connective gland small and inconspicuous; style stouter than filaments, subulate, c. 3-5-4 cm. long; ovary 2-celled, multiovulate.

Fruit very depressed globose, up to c. 6 cm. diam., 3–4 cm. tall, distinctly rose scented, pale orange yellow or greenish yellow tinged pink and flushed pink on one side, surface dull, closely gland dotted; apical umbilicus c. 1-1-75 cm. diam., with the 4 thickened slightly incurved greenish calyx lobes, and style remains; pericarp firm, slightly juicy, pale orange yellow, sweet and slightly astringent, with strong taste of rose water, 1 cm. thick or more; seed 1, lying loosely in centre, depressed globose, c. 25 cm. diam., testa thick, brown or white, pithy, closely adhering to the rugose surface of the cotyledons.

13. Eugenia plumbea King, Mat. F.M.P., No. 12, 85 (1901); Ridl., F.M.P., I, 727. (Fig. 12c).

Perak: Gunong Batu Puteh, 3,400 feet, Wray 479 (type collection).

Distrib: Endemic.

So far known only from one collection.

A tree. Twigs slender, 4-angled, bark dark. Leaves thinly coriaceous, lanceolate, acuminate, base cuneate, up to Vol. XII. (1949).
Fig. 12. a, *E. porphyranthera*; b, *E. oreophila*; c, *E. plumbea*; d, *E. Rostadonis.*

Gardens Bulletin, S.
c. 10 cm. × 3.5 cm., both surfaces lead colour when dry, the upper shining, the lower dull; primary nerves up to 10–12 pairs, impressed above, prominent below, c. 0.5–1 cm. apart, ascending and running straight to a conspicuous intramarginal nerve c. 5 mm. from leaf margin, with a much fainter loop very close to the margin; petiole very short, up to c. 3 mm. long.

Inflorescences terminal or axillary, of shortly pedunculate racemes bearing about 3 flowers. Flowers distinctly pedicellate; calyx campanulate, c. 1.6 cm. long, rounded at base; lobes 4, broad and rounded, 4–5 mm. tall; petals rotund-reniform, larger than calyx lobes but shorter than stamens. Flowers, including stamens, delicate green (fide Wray). Fruit unknown.

14. Eugenia Rostadonis Ridl. in Journ. Roy. As. Soc. Str. Br., LXI, 8 (1912); F.M.P., I, 727. (Fig. 12d).

Trengganu: Bundi, Rostados s.n. (type collection).
Distrib: Endemic.

? A tree. Twigs slender, terete, with smooth brownish bark. Leaves thinly coriaceous, lanceolate, up to 10.5 cm. × 3.5 cm., apex acuminate, base cuneate, midrib impressed above in a narrow channel, elevate below; primary nerves 6–8 pairs, impressed and obscure above, slender and raised below, c. 1 cm. apart, meeting in a looped intramarginal nerve 2–4 mm. from leaf margin, with another very obscure loop very close to the margin; secondaries and reticulations invisible above, secondaries below very few, reticulations lax, very slender; upper surface drying reddish black, closely and finely punctate, lower surface pale with numerous minute raised darker glands; petiole slender, up to c. 1 cm. long.

Inflorescences terminal or from upper leaf axils, of short cymes of 2–5 flowers, peduncle c. 2 mm. long with a pair of small persistent triangular acute bracts c. 1 mm. long; pedicels 3–4 mm. long with a pair of similar bracteoles; calyx tube c. 1.2 cm. long, campanulate or funnel shaped, narrowed to a short stout pseudostalk; lobes broadly ovate orbicular, c. 7 mm. wide and 5 mm. tall, apparently more or less persistent; petals white (fide Ridley); stamens numerous, slender, over 1 cm. long; style c. 3.5 cm. long. Fruit unknown.

Although only one collection is known of this species, it appears distinct in the lax habit, the leaves drying dark above and pale below, and in the very short, usually terminal Vol. XII. (1949).
inflorescences with persistent bracts and bracteoles. It is allied to *E. porphyranthera* Ridl. and *E. plumbea* King, but very distinct from both in foliage characters.

15. **Eugenia Scortechinii** King, Mat. F.M.P., No. 12, 85 (1901), incl. var. *parvifolia* King; Ridl., F.M.P., I, 725. (Fig. 11c).

Not uncommon from Penang to Johore on the west side of the Main Range, in lowland forest. There is one doubtful collection from Singapore, *SFN 5974 (Burkill)*, in which the twigs are rounded.

Distrib: Lower Siam.

A tree up to c. 16 metres tall or a shrub. Youngest twigs strongly 4-angled, winged below nodes, bark smooth and brown, older twigs terete with greyish or brownish bark. _Leaves_ lanceolate, ovate lanceolate or ovate oblong, apex acute or acuminate, narrowed to a rounded, more or less cordate base, upper surface drying dark brown to almost black, closely and minutely punctate, lower surface paler, reddish or reddish brown, without visible glands; midrib narrowly impressed above, prominent below; _primary nerves_ up to c. 10 pairs, usually c. 1 cm. apart, impressed above, prominent below, ascending and curving gently up to a conspicuous intramarginal nerve c. 5 mm. from leaf margin, with a very faint loop nearer the margin; secondaries and reticulations very faint or invisible above, visible below but faint; petiole 2–3 mm. long.

Inflorescences terminal or from upper axils, very short, almost sessile, rachis c. 1 cm. long or less, _flowers_ up to c. 9, sessile or pedicellate, red with yellow centre; _calyx_ widely campanulate, 1–1-4 cm. long, abruptly contracted at base into a stout pseudostalk c. 3–4 mm. long, lobes 4, persistent, unequal, broadly ovate rounded, the larger c. 7 mm. across at base and 5 mm. tall; _petals_ 4, free, red (fide King), orbicular, thick textured with thin margins, c. 10 mm. diam.; _stamens_ numerous, 1 cm. or more long, filaments slender, subulate, anthers oblong, c. 1.5 mm. long, no connective gland visible; _style_ slender, c. 3.5 cm. long; _ovary_ 2-locular multiovulate. _Fruit_ (probably unripe) oblong globose, c. 2 cm. diam., the whole of the apex deeply excavate, fringed with the very short remains of the calyx tube and the hardly enlarged calyx lobes; seeds apparently 2, cotyledons stalked, inner faces folded and excavate, hypocotyle long but not reaching outer surface of seed.

Gardens Bulletin, S.
E. Scortechinii King var. cuneata var. nov.

A typa foliis basi cuneatis, petiolatis, ramulis plus minusve teretis vel leviter sulcatis differt.

TRENGGANU: Ulu Brang, 1,000 feet, SFN 33661 (Moysey & Kiah).

NEGRI SEMBILAN: Sungai Ujong, Alwins s.n., 3329.

SELANGOR: Batu Caves, Forest Dept. FMS 3079; Labu river, Ridley s.n.

PAHANG: Sungai Cheka, Kuala Lipis, Forest Dept. FMS 4028, TYPE collection, holotype in Herb. Singapore.

JOHORE: Kuala Sembrong, Lake & Kelsall s.n.

Distrib: Endemic.

KEDAH: Koh Mai Forest Reserve, SFN 35207 (Kiah); Langkawi, Haniff s.n.

KEMAMAN: Bukit Kajang, Corner s.n. (leaves only).

PENANG: Richmond Pool, Ridley s.n.; Government Hill, 2,400 feet, Curtis s.n.; Telok Bahang, SFN 12685 (Haniff).

PAHANG: Kuala Teku, 500 feet, Seimund 438, 538.

Distrib: Assam, Burma, Siam, Sumatra.

A small tree. Branchlets terete or more or less compressed, smooth, bark brownish or greyish. Leaves oblong, lanceolate or narrowly ovate, up to c. 26 cm. × 7 cm., but variable in shape and size, apex acuminate, base slightly narrowed or truncate, or rounded and more or less cordate, upper surface drying brown to black, minutely punctate, lower surface paler with dark gland dots; midrib more or less impressed above, prominent below; primary nerves up to c. 15 pairs in largest leaves, 1–3 cm. apart, impressed above and often very inconspicuous, slender but prominent below, ascending and curving gently, up to a well marked shallowly looped intramarginal nerve c. 0.5–1 cm. from leaf margin, with a much fainter loop much nearer the margin usually visible; secondaries and reticulations usually faint or obscure above, fine and slightly raised below; petiole short and stout, 5 mm. or less long.

Inflorescence few flowered, terminal, short, usually on a peduncle of variable length, but whole inflorescence not more than c. 4 cm. long; calyx up to c. 2 cm. long on a pedicel up to c. 2 cm. long, widely campanulate, narrowed rather abruptly at base to a pseudostalk which may reach almost 1 cm. but is usually shorter, bracts and bracteoles

Vol. XII. (1949).
Fig. 13. a, *E. diospyrifolia*; b, *E. pseudoformosa*; c, *E. johorensis*; d, *E. densiflora.*

Gardens Bulletin, S.
minute, narrowly ovate, subpersistent, lobes 4, more or less unequal, broadly ovate rounded, the largest nearly 1 cm. across at base and 5 mm. tall; petals 4, free, orbicular, glandular pustulate, c. 1 cm. diam.; stamens numerous, c. 2 cm. long, filaments very slender, subulate, anthers oblong, c. 1 mm. long, connective gland apparently none; style very slender, c. 4 cm. long; ovary 2-celled, multiovulate. Fruit (probably unripe) very like that of *E. Scortechinii*, but with a more pronounced apical calyx tube.

The plants included here vary greatly in size of leaf. Part may be *E. diospyrifolia* var. *lanceolata* (Korth.) Craib, which I have not seen. Seimund's collections from Kuala Teku have very small oblong lanceolate leaves and may be a riverside variety. The species appears to be a variable one in foliage characters, judging from specimens in Herb. Calcutta named by King and from a long series of specimens included here in Herb. Dehra Dun.

17. *Eugenia pseudoformosa* King, Mat. F.M.P., No. 12, 83 (1901); Ridl., F.M.P., I, 725, pro parte; *E. formosa* King, loc. cit. 80, non Wall. *Syzygium pseudoformosum* (King) Merr. & Perry in Mem. Amer. Acad. Arts & Sci, XVIII, 3, 165 (1939) pro parte. (Fig. 13b).

In lowland forest from Perak and S. Trengganu to Singapore, once recorded from Perak at 3,000–4,000 feet.

Distrib: Lower Siam, Borneo, Java.

A shrub or small tree, bark thin smooth entire, silvery grey, green below surface; wood pale yellowish turning dingy on exposure. *Branchlets* terete, slightly compressed at nodes, bark, usually pale. *Leaves* elliptic or oblong elliptic, up to 30 cm. or even more long, and 12–13 cm. broad, apex acuminate, base narrowed, rounded and more or less cordate; upper surface drying olivaceous brown to dark brown, very minutely gland dotted or glandular pustulate, lower surface paler, usually yellowish brown, not visibly glandular; midrib impressed above, prominent below; *primary nerves* up to about 20 pairs, usually c. 14, more or less impressed above, elevate below, widely spaced, ascending, nearly straight or curving gently up to a prominent looped intramarginal nerve 0.5–1 cm. from leaf margin, with a much fainter intramarginal nearer the margin; secondaries few; reticulations lax, distinct below, but much less prominent than primaries; petiole short, c. 0.5 cm. long, thick and corky, drying pale.

Inflorescences terminal, of very shortly peduncled cymes, or the flowers fascicled and rather densely crowded. *Flowers* sessile or nearly so, pink except for white margin of petals; *calyx* narrowly campanulate, glandular pustulate, up to c. 1.8 cm. long and 1 cm. across mouth before anthesis,

Vol. XII. (1949).
the base narrowed rather abruptly into a stout conical pseudostalk which is variable in length but may reach c. 6 mm.; lobes 4, broad and rounded, the outer smaller, more or less triangular, the largest nearly 1 cm. across at base and 6–7 mm. tall; petals 4, free, broadly obovate-orbicular, gland dotted, c. 1 cm. diam.; stamens up to c. 3-5 cm. long, filaments slender, broadened at base, anthers oblong, c. 2-1 mm. long, connective gland not visible; style slender, c. 4 cm. long; ovary 2–locular, multiovulate. Fruit similar to that of E. Scortechinii, oblong globose, narrowed at base, the whole apex deeply excavate with the calyx lobes persisting for some time.

Merrill and Perry include here E. formosa Koord. and Valet. in Meded. Lands Plantent., XL, 73 (1900); Atlas Baumart. Java, III, figs. 459, 460, but although what Koorders and Valeton describe can hardly be E. formosa Wall., I am a little doubtful as to whether it can be included in E. pseudoformosa King. The flower buds as figured by Koorders and Valeton are rather different in shape from those of the Malay Peninsular material, the calyx tube being much less narrowed at the base. They are more like the buds of E. diospyrifolia but the swollen corky petiole, which is characteristic of E. pseudoformosa, and which Koorders and Valeton figure, is not present in E. diospyrifolia.

18. **Eugenia tiamanensis** Ridl. In Trans. Linn. Soc., III, 299 (1893); F.M.P., I, 725. (Fig. 14c).

PAHANG: Pulau Tioman, Ridley (not seen); Joara Bay, Pulau Tioman, SFN 1043 (Burkill)?

This species was described by Ridley from specimens collected by himself in rocky jungle in Pulau Tioman, but no number was quoted in the description. No type specimen, or any specimen written up by Ridley, or collected by him and corresponding to his description can be discovered in the Herbaria at Kew and Singapore, although such specimens, if they exist, should be in Singapore.

Burkill's collection fits the description as far as it goes, except that Ridley describes his plant as a large tree, and Burkill's field note reads "small tree, 15 ft."

If SFN 1043 is correctly placed, then E. tiamanensis comes very near to E. Scortechinii var. cuneata and may be only an extreme form of it, but the leaves are much

Gardens Bulletin, S.
narrower and much more narrowed to apex and base, the petioles are longer and there are slight differences in the venation.

E. pseudoformosa, *E. Scortechinii*, *E. diospyrifolia*, and *E. tiiumamensis* are difficult to define in a satisfactory manner, and this appears to be the experience of most botanists who have worked on these and related species. The obscure status of *E. tiiumamensis* adds to the difficulty. The following are the main distinguishing points between the four species:

E. pseudoformosa—Inflorescence and flowers more or less sessile; twigs rounded; leaves broadest about middle, usually large (c. 20 cm. long), base rounded or subcordate.

E. diospyrifolia—Inflorescence peduncled, flowers pedicelled; twigs more or less rounded or compressed or more or less 4-angled; leaves usually broadest near base, base truncate, rounded or subcordate.

E. Scortechinii—Inflorescence and flowers more or less sessile; twigs strongly angled to winged; leaves broadest about middle (c. 15 cm. long or less), base rounded or subcordate, nearly sessile.

E. Scortechinii var. *cuneata*—Inflorescence and flowers more or less sessile; twigs rounded or slightly angled; leaves broadest about middle (15 cm. long or less), base cuneate, petiolate.

E. tiiumamensis—Inflorescence and flowers more or less sessile; twigs rounded; leaves narrow lanceolate, long narrowed to apex and base, petiolate.

19. *Eugenia pendens* Duthie in Hook. fil., F.B.I., II, 475 (1878); King, Mat. F.M.P., No. 12, 94; Ridl., F.M.P., I, 726. (Fig. 14a).

An endemic species not uncommon in lowland forest from Perak and Kelantan to Singapore.

A small tree. Twigs slender, terete, more or less compressed at nodes, smooth, bark brownish. Leaves thinly coriaceous, elliptic, oblong elliptic to ovate lanceolate, up to c. 22 cm. × 9 cm., but usually smaller, apex acuminate, sometimes abruptly, acumen blunt or acute, base cuneate; upper surface drying olivaceous or brownish, minutely punctate, lower surface greenish, gland dotted; midrib shallowly impressed above, prominent below; primary nerves 10–15 pairs, usually c. 1 cm. apart, impressed above,

Vol. XII. (1949).
elevate below and rather slender, ascending and curving to a looped intramarginal nerve 4-6 mm. from leaf margin, with another very fine loop nearer the margin; reticulations very fine above and raised, visible only under a lens, fine, raised and lax below; petiole up to c. 1 cm. long.

Inflorescences terminal or occasionally axillary, on a variable peduncle up to c. 1 cm. long, the inflorescence rachis not more than about 2 cm. long. Flowers about 5-6 on very variable bright green pedicels up to c. 2.5 cm. long; calyx funnel shaped or more or less campanulate, c. 1 cm. long, the tube very pale yellow flushed pink, the lobes pale greenish yellow flushed pink, narrowed at base and rather

Gardens Bulletin, S.
abruptly contracted into a pseudostalk varying from 3–4 mm. to almost none; lobes 4, persistent, spreading, unequal, very broad, the larger c. 1 cm. across and 4–5 mm. tall; petals 4, free, quickly deciduous, gland dotted, orbicular, c. 1 cm. diam.; stamens numerous, up to 1-3 cm. long, filaments slender, anthers less than 1 mm. long, connective gland very inconspicuous; style stouter than filaments and about equal to them in length. Fruit depressed globose, green flushed red (?unripe), c. 2-5 cm. diam., with obscure vertical ridges when dry, apical excavation wide and shallow, c. 1-2 cm. diam., fringed by the very short calyx tube and persistent reflexed calyx lobes.

Many specimens have been wrongly accredited to this species in Herb. Singapore. In Herb. Kew is a sheet of Scortechini 2021 determined as this species by King and later queried in an unknown hand. It is E. virens Koord. and Valet. Perhaps this sheet is the basis of King's remark in the "Materials" that E. pendens is allied to E. densiflora, for E. virens is much more similar, superficially, to E. densiflora than to E. pendens.

20. Eugenia johorensis Ridl. in Journ. Roy. As. Soc. Str. Br., LXI, 8 (1912); F.M.P., I, 725. (Fig. 13c).

Johore: Gunong Pulai, Ridley's collector s.n., dated 1892 (type collection).

A tree (fide Ridley). Older twigs terete with brown flaky bark, youngest parts 4-angled with narrow wings on the angles, smooth. Leaves elliptic or elliptic oblong, up to c. 13 cm. long and 5-5 cm. broad, apex shortly acuminate, acute, base broadly cuneate-rounded, abruptly narrowed on to the petiole; petiole 1 cm. long or a little less; midrib lightly impressed above, elevate below; primary nerves 8 or 9 pairs, 1 cm. apart, faint and slightly raised above, elevate below, slender but bold, meeting in a shallowly looped intramarginal nerve 5–8 mm. from leaf margin with a much finer intramarginal 1-5–2 mm. from margin; secondaries and reticulations faint and slightly raised above, the secondaries below almost as conspicuous as the primaries, the reticulations fainter; both surfaces drying brownish, not gland dotted.

Flowers terminal (or also from upper leaf axils), in pairs, on very short pedicels c. 3 mm. long, apparently bearing minute subsistent bracts and bracteoles; calyx tube, including pseudostalk, c. 2 cm. long, broadly campanulate and abruptly narrowed to a slender pseudostalk 6-8 mm. long: lobes broad, rounded, unequal, ?subsistent; petals large, rounded; stamens numerous, c. 2 cm. long; style c. 2-5 cm. long. Fruit unknown.

Vol. XII. (1949).
Only one sheet is known of this species. It bears two mature flowers and two buds. It seems curious that this species, which must be a conspicuous one with its large flowers, has never been met with again.

Wild usually near the sea and cultivated in a number of varieties. Some of the Malay names are: *Jambu Ayer, Jambu Puteh, Jambu Ayer Mawar, Jambu Ayer Rhio, Jambu Ayer Patah Raja.*

Distrib: Lower Burma, Andamans, Nicobars, to Java.

A small to medium sized tree, massive when old. *Twigs* rather slender, terete, the youngest green the older with smooth brown bark. *Leaves* coriaceous or thinly coriaceous, broadly oblong, elliptic oblong, elliptic lanceolate or elliptic, occasionally narrowly ovate, apex acute or subacute, base slightly narrowed, rounded and sometimes slightly cordate, up to c. 25 cm. × 10 cm., but variable in size, rather dull dark green above, paler below, usually drying pale reddish brown, in life with minute scattered pellucid gland dots, often black dotted below when dry; midrib channelled above, elevate and rather broad below; *primary nerves* up to c. 12 pairs, spreading-ascending, raised on both surfaces but not very prominent, sometimes channelled above when dry, meeting in a looped intramarginal nerve c. 5–10 mm. from margin with another series of fainter loops nearer the margin; secondaries and reticulations rather obscure in life, distinct when dry but less prominent than primaries; petiole 5 mm. or less long.

Inflorescences axillary or terminal, 5–10 cm. long and broad, on peduncles up to c. 3 cm. long, or almost sessile; *flowers* white, in threes, twos or solitary at the ends of the two or three pairs of slender, spreading, distant branches up to c. 3 cm. long, the rachis and branches green; flowers sessile or on pedicels up to c. 1 cm. long; *calyx* pale green, obovoid, c. 1.4–1.5 cm. long, c. 1.5 cm. across, narrowed at base into a short stout pseudostalk; lobes 4, somewhat unequal, transversely oblong, rounded, concave, c. 1 cm. across at base and 4–5 mm. tall, persistent; *petals* 4, white with inconspicuous brownish gland dots, obovate orbicular,

Gardens Bulletin, S.
shortly and broadly clawed, c. 1.2-1.5 cm. long; stamens numerous, filaments white or pale greenish white, slender, terete, the longest up to c. 2.5 cm., anthers oblong, c. 1.5 mm. long, connective gland small and inconspicuous; style stouter than filaments, c. 3 cm. long; ovary 2-celled, multiovulate.

Fruit greenish or whitish or red when ripe, shining and of a waxy appearance, slightly ribbed, broadly obconic or pyriform or somewhat turbinate, usually c. 4-6 cm. long and broad, but often much larger in cultivation, apex widely excavate, bearing the much enlarged, fleshy, incurved calyx lobes; pericarp very thick, white, spongy, slightly juicy, seeds 1-2 lying loosely in a cavity in the centre, irregularly globose or hemispherical, 1.2-1.5 cm. diam., testa white, thick and pithy, adhering closely to cotyledons; structure of cotyledons very similar to that of *E. malaccensis* and *E. aquae*.

22. **Eugenia pseudomollis** nom. nov.

E. mollis King, Mat. F.M.P., No. 12, 86 (1901); Ridl., F.M.P., I, 728; non Willd. ex Berg. (1854). (Fig. 15a).

Perak: Larut, within 300 feet, Kunstler 2636, 2808 (syntypes), within 100 feet, Kunstler 5572 (syntype); Taiping, Wray 2372 (syntype), within 100 feet, Kunstler 8887 (syntype).

Distrib: Sumatra.

A small tree or shrub. Twigs slender, slightly 4-angled or terete and compressed at nodes, pale brown, bark faintly papillate, with a covering of very short coarse brown hairs. Leaves thinly coriaceous, oblong lanceolate, apex acuminate to a narrow acute acumen, base slightly narrowed, rounded and subcordate, up to c. 28 cm. × 6.5 cm., upper surface drying olivaceous brown, minutely punctate, glabrous, lower surface darker, minutely and closely glandular pustulate, clothed with short stiff coarse brown hairs; midrib impressed above, prominent below and rounded; primary nerves 25-30 pairs, fine and slightly raised above, slender but prominent below, 1-2 cm. apart, ascending and running straight or very slightly curved to a very shallowly looped intramarginal nerve c. 3-5 mm. from leaf margin; secondaries and reticulations very fine and almost invisible above, except under a lens, slightly more pronounced below, the few secondaries fairly distinct, sometimes almost as prominent as primaries; petiole stout, 3-5 mm. long.

Inflorescences in lax terminal panicles up to c. 21 cm. long, peduncle up to c. 5 cm., compressed and obscurely 4-angled like the branchlets of the inflorescence and covered with the same coarse indumentum as the twigs and under surfaces of the leaves; branchlets in distant pairs, c. 5-6 cm. apart, the lower pair almost horizontal, c. 5-6 cm. long, the
upper two pairs shorter and more ascending; flowers numerous, not crowded, usually in threes at the ends of short secondary or tertiary branchlets, these branchlets often subtended by a solitary flower or a pair of flowers; flowers white (fide Wray and Kunstler); pedicel variable, from 1–5 mm.; calyx c. 1 cm. long, the tube scurfy, funnel shaped, tapering quickly from below lobes to a short rather obscure pseudostalk c. 1.5 mm. long; lobes 4, unequal, broadly ovate rounded, the largest c. 4 mm. across and

Gardens Bulletin, S.
3 mm. tall; petals 4, free, orbicular, c. 7–8 mm. diam., gland dotted; stamens numerous; ovary 2-celled, multi.ovulate. Fruit (ex King) ovoid globose, c. 1.5 cm. diam., crowned by the cupular calyx and covered with deciduous scurf-like hairs.

A species easily recognised by the short thick brown hairs on the branches and undersurfaces of the leaves, and the scurfy indumentum of the inflorescence and calyx tube.

23. **Eugenia papillosa** Duthie in Hook. fil., F.B.I., II, 495 (1878); King, Mat. F.M.P., No. 12, 84; Ridley, F.M.P., I, 730; Corner, Wayside Trees of Malaya, p. 501; *Syzygium papillosum* (Duthie) Merr. & Perry in Mem. Amer. Acad. Arts & Sci., XVIII, 3, 157 (1939). (Fig. 15b).

Not uncommon in lowland forest, often in fresh water swamp forest, from Perak to Singapore.

Distrib: Borneo.

A tall tree, base of trunk often with strongly arcuate and branched stilt roots; bark thickly papery flaky, bright orange rufous, bright green immediately below surface even in oldest trunks; inner bark pallid. *Branchlets* stout, terete, brown to dark brown, the youngest scurfy. *Leaves* coriaceous, obovate oblong, or elliptic oblong, or oblong lancolate, up to c. 35 cm. × 15 cm., apex subacute or blunt, base slightly narrowed, cordate auriculate, subamplexical; upper surface drying blackish brown, smooth, not, or very sparsely punctate, lower surface brownish or reddish, glandular, sparsely scurfy when young; midrib impressed above, prominent and rounded below; *primary nerves* up to about 20 pairs, impressed or slightly raised above and very slender, very prominent below, 1–3 cm. apart, arising almost at right angles to the midrib and curving up to a prominent looped intramarginal nerve c. 3–10 mm. from leaf margin, a much fainter loop much nearer and usually hidden by the strongly recurved margin; reticulations faint or obscure above, lax and well marked below but much less prominent than primaries; petiole very short and thick, the leaves appearing sessile.

Inflorescences panicled, several together, terminal or from the upper axils, shorter than leaves, reaching 15–18 cm., but variable in length; peduncles, rachis and branchlets rather stout but thinner than twigs, more or less compressed, scurfy like the vegetative branchlets; branchlets ascending or divaricate; *flowers* sessile, fragrant, yellowish green or almost white, crowded in bracteate heads at the ends of the short ultimate branchlets, each flower subtended by two subpersistent lanceolate bracts c. 5 mm. long, with broader ovate bracts at the base of the head; calyx c. 1 cm.

Vol. XII. (1949).
long, funnel shaped or narrowly campanulate, slightly constricted below lobes, narrowed to a rather stout pseudostalk c. 5 mm. long, lobes 4, unequal, broadly triangular, blunt, c. 2–3 mm. tall, reflexed after anthesis; petals 4, free, quickly deciduous, orbicular, shortly clawed, conspicuously veined, c. 6–7 mm. diam.; stamens numerous, up to c. 1-6 cm. long, filaments slender, subulate, anther oblong elliptic, less than 1 mm. long, with a brownish connective gland; style stouter than filaments, c. 1-3 cm. long; ovary 2-celled. Fruit globular, c. 2-5 cm. diam., pale green.

A conspicuous and well marked species of lowland swampy forest, with its orange papery flaky bark, large almost sessile amplexicaul leaves and bracteate heads of flowers.

24. **Eugenia densiflora** (Bl.) Miquel, Anal. Bot. Ind., I, 17 (1850); DC., Prodr. III, 287 (1828) in syn.; Duthie in Hook. fil., F.B.I., II, 473; King, Mat. F.M.P., No. 12, 84; Ridl., F.M.P., I, 728; Koord. & Valet., Atlas Baumart. Java, III, figs. 446, 447; Corner, Wayside Trees of Malaya, p. 497, fig. 168. **Myrtus densiflora** Bl., Bijdr., 1087 (1826). **Jambosa densiflora** DC., Prodr., III, 287 (1828) [De Candolle here publishes in synonymy "Eugenia densiflora Bl." Whether this is to be regarded as an alternative name or whether it has no nomenclatorial standing is not clear. De Candolle does not quote Myrtus densiflora Bl., but he does give the page reference to the Bijdragen. It would appear that Miquel's is the earliest valid transfer to Eugenia]. **Syzygium pycnanthum** Merr. & Perry in Mem. Amer. Acad. Arts & Sci., XVIII, 3, 168 (1939). (Fig. 13d).

Common in lowland forest and on seashores from Penang and Trengganu to Singapore, and once recorded from forest at 3,000 feet in Perak.

Distrib: Siam, Sumatra, Borneo, Java.

A tree up to c. 16 metres tall, or shrubby. Bark rather variable; trees in open—bark scaly in large thin angular pieces, not fissured or rugose, greyish pinkish brown, dark, inner bark pale pinkish brownish; trees in shade—bark smooth, entire, pinkish greyish, pale; young trees—bark thinly and finely papery flaky, scaling in small pieces, pale greyish white; inner bark green immediately below surface, then pinkish. **Branchlets** stout, terete or slightly compressed, with reddish or brownish striate or rather flaky bark. **Leaves** coriaceous, rather variable in shape and size, usually elliptic oblong, or ovate oblong or even lanceolate, up to c. 28 cm. × 10 cm., apex acuminate, base cuneate or broad and narrowed abruptly to the petiole.
upper surface drying olivaceous, brown or reddish brown, usually closely and minutely punctate or glandular pustulate, lower surface pale brown or reddish brown, more or less black gland dotted; midrib impressed above, prominent and rounded below; primary nerves up to c. 20 pairs, usually 1–2 cm. apart, slender but raised and distinct on both surfaces, ascending and curving gently up to a distinct looped intramarginal nerve which is sometimes as much as 2 cm. from leaf margin but more usually 7–10 mm., with a slightly less marked but still distinct series of loops 3–4 mm. from margin, and a third faint series very close to the margin; in some leaves there may be 4 intramarginal veins, but the two inner ones are nearly always present and distinct; secondaries and reticulations raised on both surfaces, distinct, but less prominent than primaries and easily distinguishable from them; petiole usually rather stout, wrinkled, up to c. 1 cm. long.

Panicles terminal, short and dense, up to c. 15 cm. across, usually almost sessile, but sometimes on peduncles c. 2 cm. long, much branched, the branchlets stout, more or less compressed, with wrinkled or striate brown or reddish bark; flowers sessile or shortly pedicellate, white or rose pink, up to c. 5 cm. across when expanded; calyx c. 1.5 cm. long, tube funnel shaped, tapered from below lobes, striate when dry, slightly narrowed at base into an obscure pseudostalk 1–2 mm. long; lobes 4, unequal, broad and rounded, the two inner larger with thin margins, c. 8–10 mm. across and 5–7 mm. tall; petals 4, free, orbicular with broad base, c. 1.5 cm. diam., gland dotted; stamens numerous, up to c. 5 cm. long, filaments slender, flattened below, subulate above, anthers oblong, c. 1.5 mm. long, connective gland not visible; style c. 5 cm. long, a little stouter than filaments; ovary 2-celled, multiovulate. Fruit globose, c. 2–3 cm. diam., pinkish to purple, apical excavation shallow, c. 0.5–1 cm. diam., fringed with the persistent enlarged erect sepals.

Common on riverbanks in the lowlands in Patani, Upper Perak, Kelantan and Pahang. Distrib: Lower Siam, Borneo, Java (fide Ridley).

Differs from the typical form in being a bushy small tree of river banks, with smaller narrower leaves with the

Vol. XII. (1949).
venation less prominent, especially above, with usually only one intramarginal nerve which is much closer to the leaf margin; and in the laxer inflorescence with usually long pedicelled flowers.

Fruit globular or more or less depressed globular, 1.5–2 cm. diam., crowned by the erect very conspicuous calyx lobes as much as 6 mm. high; pericarp fleshy, soft, 3–5 mm. thick, inner layer fibrous; seed c. 1 cm. diam., testa rather thin, closely adhering to the cotyledons; cotyledons side by side or oblique, dark coloured, slightly unequal, hypocotyle nearly central, plumule rather large and conspicuous, cotyledons sessile, the inner faces nearly plane except for a ridge and depression to one side of the plumule.

25. **Eugenia rhomboidea** Ridl. in Journ. F.M.S. Mus., V, 33 (1913–14); F.M.P., I, 753. (Fig. 16a, b, c).

Selangor: Gunong Mengkuang, 5,000 feet, Robinson s.n. (type collection).

Leaf specimens collected on the summit of Gunong Belumut, Johore (*Holttum 3*) may also be this species.

Distrib: Endemic.

A mountain shrub. Branchlets slender, terete or obscurely 4-angled with dark longitudinally wrinkled bark. **Leaves** rather thick, narrowly obovate or rhomboid, apex acuminate, often shortly and abruptly, base long narrowed on to petiole, 4 cm. × 1.5 cm. to 5 cm. × 3 cm.; upper surface drying brownish, somewhat polished, minutely punctate, lower surface paler, dull, copiously black dotted; midrib impressed above, not raised below except at base where it is slightly keeled; **primary nerves** numerous and close together, slightly raised above but obscure, invisible or very obscure below; petiole up to c. 5 mm. long, wrinkled.

Inflorescences terminal, panicked, up to c. 3 cm. long, with about 2 pairs of short branchlets, angled, bark dark and wrinkled. **Flowers** in threes at branchlet ends, sessile; calyx 9–10 mm. long, grey and wrinkled when dry, c. 5 mm. across mouth after anthesis, more or less funnel shaped, tapering to base without definite pseudostalk; lobes 4, small, broadly ovate triangular, c. 2–3 mm. across and 1 mm. tall; petals apparently 4, with one free and the others falling as a thick calyptra, the free petal transversely oblong orbicular, thick textured, a little more than 3 mm. across and 2 mm. tall; stamens many, up to c. 4.5 mm. long, filaments subulate, stout at base, tapering upwards, anthers transversely oblong; **style** very stout, c. 5 mm. long; **ovary** 2-celled below, 3-celled above. **Fruit** unknown.

Gardens Bulletin, S.
Distinct in this group in the small obovate or rhomboid leaves usually with the apex abruptly acuminate, and in the narrow rugose calyx with very small lobes, rather short stout stamens and the very stout short style.

Fig. 16. a, b, c, E. rhomboidea; d, E. salictoides; e, E. selangorensis.
26. **Eugenia salictoides** Ridl. in Journ. Roy. As. Soc. Str. Br., LXVIII, 12 (1915); F.M.P., I, 728. (Fig. 16d).

Pahang: Tahan river banks, Ridley 2647, 16396; Sungai Tahan, SFN 20546 (Holttum), Corner s.n., Forest Dept. FMS 42944; Sungai Teku, Seimund s.n.

Distrib.: Endemic.

A bush, bark smooth, pale grey or pale brown with dark irregular lines, creviced. **Twigs** terete, smooth, with brownish or greyish creviced bark. **Leaves** narrow lanceolate, coriaceous, willow-like, up to c. 12 cm. long and 1-6 cm. wide, apex acuminate, blunt or subacute, base long tapered, petiole dark coloured, wrinkled, c. 5 mm. long; midrib impressed above, prominent and more or less keeled below; **primary nerves** up to c. 40 pairs, impressed above, faint and inconspicuous, elevate and very fine below, 2-3 mm. apart, but irregular in spacing, meeting in a fine intramarginal nerve less than 1 mm. from leaf margin; secondaries and reticulations practically invisible above, the secondaries below difficult to distinguish from primaries, the reticulations a little fainter; upper surface drying almost black, minutely punctate, lower surface dark brown, sometimes minutely black punctate, sometimes more or less pustulate.

Panicles terminal or from upper leaf axils, up to c. 10 cm. long, peduncle slender, variable in length, usually c. 2-3 cm., bark often pustulate, branchlets slender, 1-2 cm. or sometimes longer, bearing at their apices 3 flowers, either all sessile or the outliers on exceedingly short pedicels less than 1 mm. long, with very minute and obscure broad blunt bracts; mature flower buds narrowly pyriform, c. 1 cm. long, the opened **calyx** narrowly campanulate, gland dotted, tapering into a slender pseudostalk c. 3-5 mm. long, lobes 4, semi-orbicular; gland dotted, eventually reflexed, persistent; **petals** 4, free, gland dotted; **stamens** numerous, up to c. 1-6 cm. long, style as long.

Fruit globose, up to c. 1 cm. diam., crowned by a very short calyx rim and the persistent calyx lobes, pericarp almost black and finely longitudinally wrinkled when dry, thin; testa brownish, rather thick and pithy, stripping with pericarp; seed globose, c. 7-8 mm. diam., cotyledons nearly equal, pustulate, inner faces also pustulate, slightly concave; cotyledons sessile, attached to hypocotyle near periphery of seed, radicle and plumule small.

A riverside bush which might almost be regarded as the extreme form of *E. densiflora* var. *angustifolia*. Easily recognised in this group by the very narrow leaves and long stamens.
27. **Eugenia garcinifolia** King, Mat. F.M.P., No. 12, 90 (1901); Ridl., F.M.P., I, 730. _Syzygium garcinifolium_ (King) Merr. & Perry in Mem. Amer. Acad. Arts & Sci., XVIII, 3, 167 (1939). (Fig. 17a).

Perak: Larut, 300-500 feet, Kunstler 6974; Gopeng, 500-1,000 feet, Kunstler 4541.

Johore: 3rd mile Mawai-Jemaluang road, SFN 31469 (Corner).

Distrib: Sumatra, Borneo.

A tree up to c. 30 m. tall with sharp thin spreading buttresses to c. 2.5 m.; bark light buff grey, rather lenticellate-pustular, scaly with oblong angular pieces, not fissured; inner bark pinkish brown, heart wood red brown.

Fig. 17. a, _E. garcinifolia_; b, _E. palembanica._
Twigs stout, angled, bark smooth, pale brown. **Leaves** thickly coriaceous, elliptic or elliptic oblong, with a tendency to be obovate, from c. 13 cm. × 5 cm. to 20 cm. × 10 cm., apex abruptly and shortly acute or acuminate, base narrowed, margins recurved when dry; upper surface drying greenish brown or pale brown, black dotted or glandular pustulate, lower surface dull, brownish or yellowish green, minutely gland dotted; midrib deeply impressed above, prominent below, longitudinally wrinkled; primary nerves up to c. 12 pairs, raised above, rather prominent below, ascending, curving up and interarching to form a looped sometimes rather irregular intramarginal nerve 5–10 mm. from leaf margin, with another quite distinct series of arches closer to the margin; secondaries and close reticulations raised above and below and very distinct, but distinguishable from primaries; petiole channelled above, drying black and wrinkled, 1-5–2-5 cm. long.

Panicles terminal, c. 7 cm. long and about the same across, the rachis stout but thinner than twigs, strongly angled, striate; branchlets spreading, up to c. 2 cm. long, compressed and striate, pale brown or brown; flowers white, borne singly on stout pedicels 2–5 mm. long, bracts minute, subpersistent, broadly ovate triangular reflexed; **calyx** c. 1-5 cm. long, narrowly cylindric campanulate, narrowed at base into an obscure very stout pseudostalk c. 2–3 mm. long; lobes 4, unequal, spreading, persistent, broad and rounded, the larger inner ones c. 7 mm. across at base and 4 mm. tall, with thin margins; petals 4, free, persisting until after flower is fully expanded, orbicular with a short broad oblong claw, c. 1 cm. diam., gland dotted; stamens numerous, up to c. 3 cm. long, filaments very slender, broadened at base, anthers narrowly oblong, 1 mm. long, connective gland inconspicuous; style much stouter than filaments and about the same length.

Fruit (unripe) globular ovoid, c. 1 cm. diam., apical excavation 3–4 mm. diam., fringed by the 4 hardly enlarged erect sepals.

A distinct species by reason of its large size, large thick leaves with well marked reticulation on both surfaces and the large flowers with narrow calyx tube.

28. **Eugenia selangorensis** Ridl. in Journ. F.M.S. Mus., V, 32 (1915); F.M.P., I, 730. (Fig. 16e).

Selangor: Gunong Mengkuang, 5,000 feet, Robinson s.n. (type collection).

A tree, (fide Ridley). **Twigs** stout, terete, bark brownish. **Leaves** very coriaceous, elliptic, up to c. 12 cm. × 6 cm., apex shortly and abruptly acuminate, deflexed, base narrowed, upper surface drying brownish, not

Gardens Bulletin, S.
punctate, lower surface blackish, closely covered with very minute white glistening glands; midrib deeply impressed above, prominent below and more or less keeled; primary nerves 15–20 pairs, 3–7 mm. apart, fine and impressed above, slender and slightly elevate below, ascending and curving up to a slender intramarginal nerve 2–3 mm. from the recurved leaf margin, with a very obscure series of arches nearer the margin; secondaries almost as distinct as primaries, impressed above, elevate below, reticulations raised and just visible above, more distinct below, lax; petiole rather stout, c. 1 cm. long, the leaf blade decrement upon it.

Panicles terminal, c. 4 cm. long, sessile or on a very stout greyish peduncle c. 1 cm. long, branchlets short, very stout, compressed, bark grey, wrinkled and often pustulate; flowers sessile, in threes at ends of the secondary branchlets or on exceedingly short tertiary branchlets; calyx in mature bud c. 1 cm. long, broadly funnel shaped, narrowed to a short thick ribbed pseudostalk; lobes 4, very unequal, broad and rounded, the inner larger ones c. 6 mm. across and 3 mm. tall; petals 4, free, transversely oblong ovate, c. 7 mm. across and 4 mm. tall, persisting until after flower is fully open; stamens numerous, up to c. 1.5 cm. long, filaments slender, anthers ovate globose, c. 0.5 mm. long, connective gland small and inconspicuous; style stouter than filaments and shorter than them; ovary 2-celled. Fruit unknown.

This species is known from only one collection and may be no more than a mountain variety of E. palembanica, differing in the somewhat narrower and thicker leaves and the much shorter inflorescence with much stouter branches, and a less well marked pseudostalk.

There are in Herb. Singapore a few collections from elevations of 4,500–5,000 feet which seem to be intermediate between E. selangorensis and E. palembanica. These are:

Perak: Gunong Bubu, 5,000 feet, Wray 3907, 4,500 feet, Wray 3908, 3914; Gunong Batu Puteh, 4,500 feet, Wray 415.

Pahang: Pinetree Hill, Fraser Hill, 4,800 feet, SFN 8535 (Burkill & Holttum).

730; Wall. Cat. 3618, nom. nud. E. grandis var. lepidocarpa Kurz., For. Fl. Burma, I, 490 (1877). (Fig. 17b).

Common in lowland forest, up to about 2,000 feet, and on sandy seashores from Trengganu to Singapore, but not recorded from Perak or further north on the west coast.

Distrib: Burma, Sumatra, Borneo.

A tree up to c. 15 m. tall; usually without buttresses or stilt roots; bark dull rufous fawn or pinkish brown, finely reticulately fissured with elongate meshes, not or scarcely flaky; inner bark fairly thick, stripping easily, deep purple brown. Twigs usually rather stout, terete, with smooth or slightly flaky greyish or brownish bark. Leaves coriaceous, ovate oblong, elliptic, elliptic oblong, occasionally more or less ovate, occasionally lanceolate, rarely obovate oblong, from c. 7 cm. × 3 cm. to 17 cm. × 11 cm., apex blunt or subacute or with a short abrupt point, base cuneate, or rounded and abruptly and shortly narrowed on to petiole; upper surface somewhat polished, drying olivaceous brown to black, usually very minutely and closely punctate, lower surface dull, usually darker than the upper, closely covered with very minute whitish glistening scale-like glands; midrib deeply impressed above, prominent below, rounded or more or less keeled; primary nerves c. 10–17 pairs, usually 1–1.5 cm. apart, fine on the upper surface and usually slightly elevate, occasionally lightly impressed, raised below and usually quite distinct, ascending, running straight or curving gently up to an intramarginal nerve 2–3 mm. from leaf margin; secondaries and reticulations raised above or almost or quite invisible, the secondaries below usually raised and distinct but less prominent than the primaries, the reticulations raised and visible or obscure or invisible; petiole up to c. 1.5 cm. long.

Panzicles terminal or rarely from upper axils, often clustered, usually shorter than leaves; branchlets numerous, spreading or ascending, rather stout, compressed and angled with blackish striate and wrinkled bark; flowers sessile or occasionally very shortly pedicellate, clustered at apices of branchlets, fragrant, calyx pale green, petals and stamens white, disc pale brownish yellow, c. 3 cm. across when fully expanded; calyx c. 1 cm. long. globose clavate in bud, more or less campanulate after anthesis, rather suddenly narrowed to a distinct rather stout pseudostalk 2–3 mm. long, the tube from a little below lobes to base of pseudostalk distinctly ribbed when dry; lobes 4, unequal, not persistent, transversely oblong ovate, c. 3–4 mm. across and 2 mm. tall; petals 4, free, persisting until after anthesis, semiorbicular, c. 5 mm. diam., rather thick textured with thin margins; stamens numerous, up to c. 1.5 cm. long, filaments slender,

Gardens Bulletin, S.
subulate, anthers broadly ovate, c. 0.7 mm. long, connective gland small, brownish; style stouter than filaments, c. 1.3 cm. long; ovary 2-celled, multiovulate. Fruit c. 2 cm. diam., globose, sharply vertically ribbed when dry, crowned by the cupular calyx rim.

Related to E. grandis but leaves usually smaller with less prominent venation, flowers smaller and more abruptly narrowed at base, calyx ribbed, fruit smaller, vertically ribbed and with a prominent cupular calyx rim.

30. Eugenia grandis Wight, Ill., II, 17 (1841); King, Mat. F.M.P., No. 12, 96; Gagnep. in Fl. Gen. Indo-Ch., II, 826; Ridl., F.M.P., I, 729; Corner, Wayside Trees of Malaya, p. 498, pl. 148, 149, fig. 168. Syzygium grande (Wight) Walp., Repert., II, 180 (1843); Merr. & Perry in Mem. Amer. Acad. Arts & Sci., XVIII, 3, 176. (Fig. 18a).

Wild only on sandy and rocky seacoasts. Much planted inland as a roadside tree.

Distrib: Burma, Indo-China, Siam, Borneo.

A big tree, up to c. 30 metres tall; bark greyish buff or pinkish, rough, shallowly fissured, somewhat flaky in big trees; inner bark pale pink to dark reddish, pale yellow near surface. Twigs rather slender, terete, brownish or greyish with smooth or slightly flaky bark. Leaves coriaceous, elliptic, elliptic oblong, ovate elliptic or ovate rotund, up to c. 25 cm. × 12 cm. or more in saplings, usually smaller, apex more or less shortly acuminate and deflexed, or blunt, base cuneate, or broad and narrowed abruptly on to petiole; upper surface shining in life, minutely glandular punctate, slightly bullate, drying olivaceous to blackish, lower paler in life, dull, with a close covering of very minute pale glistening scaly glands as in E. palembanica, drying dark brown or reddish, the glands then almost invisible; midrib impressed above, elevate below and longitudinally wrinkled; primary nerves up to c. 14 pairs in large leaves, usually 1–2 cm. apart, usually elevate and slender above, elevate below and slightly ascending, nearly straight or very slightly curved up to an intramarginal nerve 3–6 mm. from leaf margin with often a fainter loop very close to the margin; secondaries and reticulations usually raised on both surfaces and distinct, but less prominent than primaries; petiole channelled above, drying black, up to c. 2 cm. long.

Panicles terminal or from uppermost axils, often clustered, up to c. 14 cm. long, pedunculate or nearly sessile, rachis and spreading branchlets more slender than
Fig. 18. a, E. grandis; b, E. pachyphylla; c, E. atronervia (small leaf); d, E. Millsii.
twigs, compressed, drying dark brown or black; *flowers* c. 2.5–3 cm. across when expanded, fragrant, calyx pale yellow green, petals and stamens white, disc yellow, in threes at branchlet ends, sessile or pedicellate, the outer two flowers of the triads usually sessile or occasionally very shortly pedicellate, the centre flower sometimes on a pedicel as much as 4 mm. long, sometimes sessile; *calyx* c. 1.2 cm long, narrowly campanulate, c. 6–7 mm. across apex before expansion, very slightly constricted below lobes and tapering to a short not very distinctly marked pseudostalk c. 2 mm. long, which is more evident in the dried flower; tube nearly smooth; lobes 4, very unequal, subpersistent, the two outer very short and broad, 1–2 mm. tall, the two inner petaloid, orbicular, concave, thinner, gland dotted, c. 5 mm. diam; *petals* 4, white tinged pale green, more or less orbicular, c. 5 mm. diam., reflexed after anthesis; *stamens* numerous, filaments slender, subulate, up to c. 1.5 cm. long, anthers ovate oblong, or broadly oblong, c. 0.6–0.7 mm. long, connective gland very small and inconspicuous; *ovary* 2-celled, multiovulate.

Fruit more or less globular, often a little compressed laterally, or elliptic or elliptic oblong, more or less asymmetric, up to c. 4 cm. × 3 cm., green when ripe with very faint narrow longitudinal stripes of slightly darker green; apical umbilicus deep, 8–9 mm. diam., fringed with remains of calyx tube and occasionally the calyx lobes, style base persistent; pericarp pithy-leathery, white, c. 3 mm. thick, slightly sweet; seed globose or compressed, up to c. 2.5 cm. diam., testa thick, crustaceous, not easily removed from cotyledons, c. 1 mm. thick; cotyledons nearly equal, very pale green with minute slightly darker dots, inner faces more or less plane, attached to hypocotyle c. 5 mm. from periphery of seed, sessile. Germination hypogeeal.

A large fruited form has been found in Government House Domain, Singapore. Its fruits are elliptic to obovoid, pale green to medium green with faint longitudinal narrow lines of darker green, up to c. 5 cm. × 3.5 cm., pericarp white, pithy, slightly juicy, sweet, edible, c. 5 mm. thick, increasing to c. 10 mm. at apex and base of fruit, not so tough as in the ordinary form; apical umbilicus 7–10 mm. diam., deep, fringed with the remains of the calyx lobes and bearing style base; seed 1, more or less conforming to shape of fruit, c. 2.5 × 2 cm., testa pale brown, thick, crustaceous, closely adhering to cotyledons; cotyledons sessile, superposed, one inner face concave, the other convex, surfaces very pale yellow, pink tinged.

Vol. XII. (1949).
31. **Eugenia pachyphylla** Kurz in Journ. As. Soc. Beng., XLII, ii, 332 (1874); Duthie in Hook. fil., F.B.I., II, 477; King, Mat. F.M.P., No. 12, 89; Ridl., F.M.P., I, 733; Corner, Wayside Trees of Malaya, p. 500, fig. 168. **Syzygium pachyphyllum** (Kurz) Merr. & Perry in Mem. Amer. Acad. Arts & Sci., XVIII, 3, 168 (1939). (Fig. 18b).

Not uncommon in lowland forest from Kedah and Kelantan to Singapore, and often in ricefields in the north of the Peninsula.

Distrib: Burma, Siam, Borneo.

A *tree* up to c. 13 m. tall; bark rather rugose and tesselately flaky (description from trees in open), pale pinkish grey; inner bark pale pinkish fawn, thick. *Twigs* rather stout, terete, with pale yellow or pale brownish polished bark. *Leaves* coriaceous, obovate to oblong obovate or ob lanceolate, apex apiculate or shortly and abruptly acuminate or shortly and bluntly acute, base cuneate and narrowed on to petiole, from c. 6 cm. × 2 cm. to 16 cm. × 8 cm.; upper surface drying olivaceous brown to blackish brown, very minutely punctate, lower surface pale brown to reddish brown, with darker pustulate glands; midrib impressed above, prominent below; *primary nerves* up to c. 15 pairs, spreading-ascending, meeting in a rather faint looped intramarginal nerve 1–3 mm. from leaf margin, obscure and slightly raised above, slender below but distinct; secondaries and reticulations obscure above, faint below; petiole drying black, usually less than 1 cm. long.

Inflorescences terminal or from upper axils, usually paniculate, sometimes racemose, usually clustered, up to c. 17 cm. long but usually c. 7 cm., usually pedunculate, the rachis sometimes elongate, up to 13 cm. long without branchlets; peduncle, rachis and branchlets more or less 4-angled or compressed with brownish or blackish striate bark; *flowers* white, sessile, usually in threes at apices of branchlets, buds globose clavate c. 1 cm. long; *calyx* after expansion c. 1 cm. long, c. 1·5 cm. across mouth and lobes, broadly funnel shaped, tapering from below the lobes to a broad rounded base, the tube gland dotted and with conspicuous longitudinal rounded ridges; lobes 4, spreading after anthesis, broadly triangular rounded, c. 5–6 mm. across at base and 3 mm. tall; *petals* 4, free, quickly deciduous, suborbicular; *stamens* numerous, c. 1·5 cm. long, anthers ovate oblong, c. 0·8 mm. long, connective gland present; *style* stout at base, tapering upwards and slender above, c. 1·7 cm. long; *ovary* 2-celled, multiovulate.

Fruit obovoid or oblong-obovoid with flattened apex, c. 2·5 cm. long and 2 cm. across, smooth with a few shallow vertical ridges, pericarp pulpy, about 5 mm. thick at thickest.

Gardens Bulletin, S.
point; apex with shallow dark coloured depression bearing remains of style and on its margin the fleshy incurved enlarged calyx lobes; seeds one or two, if two hemispherical, if one, more or less globose, c. 1-2-1-4 cm. diam., the testa adhering closely to cotyledons; cotyledons nearly equal, attached to hypocotyle near middle of inner faces, shortly stalked; hypocotyle stout, reaching periphery of seed.

32. *Eugenia atronervia* Henderson in Gardens' Bulletin, Singapore, XI, 299, fig. 1 (1947). (Fig. 18c).

Johore: Sungai Kayu Ara, Mawai-Jemaluang road, at low elevations in dry *Dryobalanops* forest, SFN 29323 (Corner); 2nd mile, Mawai-Jemaluang road, Corner s.n. Known only from these collections.

A tree 10-12 m. tall, 10 cm. diam. 2 m. from ground, with low flattened stilt roots. **Bark** dull rufous fawn, smooth, entire, becoming slightly creviced, not pustulate or flaky; inner bark dull madder brown or purplish brown, wood dull reddish brown. **Twigs** very stout, rounded or somewhat flattened, not angled, bark black or brown, smooth or somewhat ridged, not flaky. **Leaves** large, narrowly elliptic, or oblong elliptic or oblong lanceolate, up to c. 36 cm. long and 16 cm. broad, apex shortly and abruptly acuminate, base shortly narrowed and more or less decurrent on petiole; upper surface drying dull fuscos brown, lower surface a warm red brown; **primary nerves** c. 17-21 pairs, somewhat raised above and quite conspicuous as are the reticulations, strongly raised and black below, the lax reticulations also raised and evident, but much less conspicuous than the primaries; secondaries few to none; primaries nearly straight or gently curving up to a slightly looped, well marked intramarginal nerve c. 3 mm. from leaf margin; petiole very stout, widely channelled above, drying black, c. 2 cm. long.

Inflorescence terminal, from 2-5-5 cm. long, stout, the largest with a 4-angled peduncle c. 2 cm. long, with two pairs of stout branchlets, the lower pair 7-8 mm. long, each with 3 terminal flowers, the upper pair distant from the lower by 2-5 cm., each c. 2 mm. long with three flowers each, inflorescence axis produced 5 mm. above upper branchlets and bearing 4 flowers; other inflorescences much shorter, c. 2 cm. long, with one pair of very short stout branchlets each with 3 flowers, and 3 terminal flowers. **Flowers** sessile, buds more or less obovoid, **calyx** campanulate or obconic, rather abruptly narrowed into a very short stout pseudostalk, c. 1-8 cm. long, flower c. 2 cm. across when expanded; calyx lobes 4, persistent, broad, rounded, c. 5 mm. long and 6-7 mm. broad; **petals** free, not quickly

deciduous, of same shape and size as sepals but thinner in texture; *stamens* c. 1 cm. long; *style* c. 1-5 cm. long; *ovary* 2-celled, multiovulate.

Fruit more or less depressed globose, up to c. 4 cm. diam., apex with a rather deep excavation c. 5 mm. diam., fringed by the very short (c. 1 mm. tall) remains of calyx tube, bearing withered stamens; surface of fruit nearly black, corrugate with broken shallow vertical ridges and furrows, smooth in places; pericarp probably pulpy or fleshy, up to c. 6 mm. thick; seed 1, transversely oblong globose, c. 2-7 cm. across, testa very thick, adhering closely to cotyledons; cotyledons side by side, nearly equal, outer surface finely rugulose, inner faces conspicuously glandular pustulate, nearly plane with a shallow wide depression, sessile, plumule and radicle rather small, attached near periphery of seed.

This species is characterised by its large leaves, short inflorescences and large flowers. It is probably allied to *E. Dyeriana* King and *E. Hemsleyana* King, but differs from both in the much larger leaves, shorter inflorescence and much larger flowers. It may also be allied to *E. pergamentacea* King but differs from that species in its larger flowers and by the nerves not being impressed on the upper surface of the leaf.

33. *Eugenia Millsii* Henderson in Gardens' Bulletin, Singapore, XI, 301, fig. 2 (1947). (Fig. 18d).

Kedah: Sungai Terap, near Selama, in forest on riverbank at low altitude, *SFN 35431* (*Henderson*).

Known only from one collection.

A *tree* c. 14-17 m. tall, diam. c. 45 cm. at 2 m. from ground, trunk fluted up to c. 2 m. from ground. Bark smooth with irregular surface cracks, brownish grey. *Twigs* terete, stout, bark greyish white or pale brown, smooth, somewhat polished. *Leaves* coriaceous, elliptic or oblong elliptic, up to c. 15 cm. long and 6 cm. broad, base cuneate, apex shortly and bluntly acute, or sometimes more or less acuminate, drying dull brown or cinereous above, dull warm brown below, both surfaces minutely punctate; petiole pale coloured, 5-10 mm. long; midrib impressed above, raised below; *primary nerves* 5-10 pairs, visible but not conspicuous above, very slightly raised and very slightly channelled, raised below and more or less conspicuous, the second or third pair from the base initiating a conspicuous intramarginal nerve 5-8 mm. from the leaf margin, the basal one or two pairs running up in a fainter intramarginal c. 1-3 mm. from margin; secondaries a little finer and less conspicuous than primaries, reticulations practically invisible when dry; petiole 5 mm. or less long, pale.

Gardens Bulletin, S.
Inflorescences terminal or from upper axils, of fascicled panicles not exceeding c. 7–8 cm. long, peduncles stout with pale bark, more or less 4-angled and striate. Flowers white, in threes at ends of branchlets, the centre flower of the triads sessile, the two outers on very short stout pedicels; calyx tube campanulate, c. 4 mm. long and slightly less across base of lobes, slightly contracted just below lobes, narrowed to a stout pseudostalk less than 1 mm. long; lobes 4, semiiorbicular, persistent, c. 4 mm. tall and 5 mm. wide; petals 4, persistent for some time after the flower is fully open, orbicular, 6 mm. tall and 6-5 mm. wide, free; stamens numerous, longest filaments c. 10 mm. long, anthers oblong or broadly elliptic, 0-5–0-6 mm. long; ovary 2-celled with many ovules; fruit unknown.

Possibly allied to E. densiflora var. angustifolia but differing in being a fair sized tree, not a bush, with flowers which are smaller and of a different colour. The venation also differs considerably.

34. Eugenia kemamensis Henderson in Gardens’ Bulletin, Singapore, XI, 303, fig. 3 (1947). (Fig. 19a).

KEMAMAN: Ulu Ayam, Kajang, c. 500 feet, in forest, SFN 30332 (Corner).

Known only from one collection.

A tree c. 8–9 m. tall, bark silvery grey, even, entire; inner bark pale pink, green below surface, wood pale buff. Twigs terete, with smooth or somewhat striate bark, pale silvery grey when dry. Leaves elliptic to elliptic lanceolate, sometimes more or less obovate, apex bluntly acute or shortly bluntly acuminate, narrowed to a rounded or truncate base, up to 18–19 cm. long and 8–9 cm. broad; drying pale brown on both surfaces, the upper surface usually rather darker than the lower, both surfaces minutely rugose when dry; midrib deeply impressed above, strongly elevate below; primary nerves distant, c. 9–11 pairs, fine and sunk above, raised below, slender but conspicuous, meeting in a well marked looped intramarginal nerve c. 0-5–1 cm. from leaf margin, with a much fainter intramarginal much nearer the margin; reticulations very faint or invisible above, very fine and lax below; petiole pale, rather stout, c. 5 mm. long.

Inflorescences from below leaves or on side twigs, practically sessile, c. 4 cm. long, rachis slender, 4-angled or compressed, with a few distant slender branchlets up to c. 2 cm. long, terminated by flowers in threes; pedicels not exceeding 2 mm. long. Flower buds c. 4–6 mm. long, obconic, tapering to a short pseudostalk; calyx lobes 4,

Vol. XII. (1949).
Fig. 19. a, *E. kemamanensis*; b, *E. subdecussata*; c, d, *E. subde-
cussata var. montana*; e, *E. viridescens*; f, *E. Hoseana.*

Gardens Bulletin, S.
broad, rounded, concave, c. 4–5 mm. broad and 3 mm. tall., petals 4, falling as a calyptra, but separable, similar in shape to calyx lobes but slightly larger and thinner in texture; stamens c. 4 mm. long; style c. 4–5 mm. long.

Fruit globose to depressed globose, up to 2–3 cm. diam., calyx rim very wide, c. 1·4 cm. diam., apex of fruit not excavate but slightly convex with more or less persistent, widely separated remains of calyx lobes; pericarp fleshy, testa brownish; cotyledons side by side, nearly equal, opposing faces nearly plane, except for a narrow radial ridge on one fitting into a corresponding groove on the other, shortly broadly stalked.

Very little material of this species is known, but it appears to be sufficiently distinct and not closely related to any other Malayan species.

Perak: sine loc., Scortechini s.n. (type collection).

Known only from the above collection. See note under *E. Swettenhamiana*.

? A tree. Branches terete, pale. Leaves elliptic, membranous, c. 10 cm. × 3·5–4 cm., apex bluntly acuminate, narrowed to a rounded subcordate almost peltate base, upper surface drying blackish, lower paler; primary nerves c. 18 pairs, obscure above, slightly elevate below, meeting in an intramarginal nerve; petiole short, stout, less than 5 mm. long.

Panicles terminal, lax, c. 15 cm. long on a peduncle c. 5 cm. long, branchlets angled, up to c. 7·5 cm. long; flowers in threes at branchlet ends; buds pyriform, narrowed to a slender pseudostalk, calyx lobes ovate. *Fruit* unknown. (ex Ridley).

36. **Eugenia subdecussata** Duthie in Hook. fil., F.B.I., II, 491 (1878); King, Mat. F.M.P., No. 12, 121, incl. var. *colorata* King; Ridl., F.M.P., I, 752; Corner, Wayside Trees of Malaya, p. 503, fig. 168. *E. colorata* Duthie, loc., cit., 492. *Syzygium subdecussatum* Wall. Cat., nom. nud. (Fig. 19b).

Common in lowland forest from Penang to Singapore, mostly to the west of the Main Range, but also on the rocky shores and islands of the east coast.

Distrib.: Sumatra.

A tree up to c. 24 m. tall, trunk slightly fluted at base or not; bark smooth, becoming rather finely and closely

reticulately creviced or fissured, not scaly rugose or pustulate, pinkish brown, often with greyish bloom; inner bark thick, pale pinkish brown to reddish buff. Twigs slender, terete, compressed below nodes, with brownish or greyish smooth or slightly flaky bark. Leaves thickly coriaceous, elliptic or oblong elliptic, sometimes elliptic ovate or elliptic obovate, from c. 5 cm. × 2 cm. to c. 15 cm. × 7 cm., apex acute, or acuminate, often very short and abruptly so, sometimes rounded, base more or less narrowed and more or less cordate, occasionally cuneate; upper surface polished, drying brown to blackish brown, minutely punctate, lower surface dull, drying brown to reddish brown, closely pustulate glandular with minute pale scale-like glands; midrib impressed above, prominent below and more or less keeled or longitudinally wrinkled; primary nerves up to c. 15 pairs, c. 0-5–1 cm. apart, usually spreading ascending and meeting a fine intramarginal nerve 1–3 mm. from leaf margin, slightly elevate and very slender on both surfaces but more distinct below, the secondaries below often as distinct as primaries, the reticulations when visible almost as distinct as secondaries; petiole less than 5 mm. long, the leaves often subsessile.

Panicles terminal or occasionally from upper axils, up to c. 10 cm. long, often clustered, usually pedunculate, peduncles from less than 1 cm. long to c. 5-5 cm., the peduncle, rachis and branchlets rather slender, much compressed, with dark striate bark, lower branchlets ascending, 2–4 cm. long, the upper ones spreading, shorter; flowers white, calyx green often flushed purple at apex, clustered at ends of branchlets or on very short tertiary branchlets, buds clavate, c. 6 mm. long; calyx funnel shaped, c. 5 mm. long, c. 3 mm. across mouth, narrowed to a rather stout pseudostalk c. 3 mm. long, lobes 5, obscure, very shortly and broadly triangular; petals calyptrate; stamens numerous, filaments slender, up to c. 3-5 mm. long, anthers broadly ovate, c. 0-4 mm. long, connective gland rather conspicuous; style very stout, c. 3-5 mm. long; ovary 2-celled.

Fruit globose or pyriform up to c. 2-5 cm. diam., smooth, green flushed dull red pink on one side when ripe, apical umbilicus narrow and deep, c. 3–4 mm. diam., without calyx tube but fringed with remains of calyx lobes; pericarp thin, sweetish, 2–3 mm. thick; seed 1, more or less globose, testa very thick and pithy, closely adhering to the cotyledons; cotyledons equal, side by side, creamy pale brown, slightly rugose and conspicuously gland dotted, inner faces slightly concave, gland dotted, attached centrally to the hypocotyle by very short broad stalks.

Gardens Bulletin, S.
E. subdecussata Duthie var. montana King, Mat. F.M.P., No. 12, 191 (1901). (Fig. 19c, d).

Common in mountain forest on the Main Range and recorded also from Kedah Peak and Gunong Sagi in Kelantan.

This variety differs from the typical form in having a more or less shrubby habit and smaller and broader and blunter leaves. The leaves, however, vary considerably, from almost rotnud, obtuse at apex and cordate at base, to oblong elliptic or obovate with a short blunt point and rounded or cuneate at base. In view of the great variation in leaf form in both the typical and varietal forms and also of the fact that the typical form is by no means confined to the lowlands, it seems probable that var. montana is hardly worth keeping up.

As King points out, Syzygium apodum Miq., Fl. Ind. Bat. Suppl. I, 312 (1860) is very close to E. subdecussata. I have seen a sheet of what is probably the type collection (leg. Teysmann, Sumatra ad littora Siboga) preserved in Herb. Calcutta. This differs from E. subdecussata in the blunter leaves with more pronounced recurved margins, the polished yellow paler branches and the slightly thicker inflorescence branchlets. Typical E. subdecussata is known from Sumatra, and further collections and collections of fruit may show that S. apodum is distinct. If it is regarded as conspecific with E. subdecussata, Miquel’s specific epithet will take precedence over Duthie’s, for Syzygium subdecussatum Wall. is a nomen nudum not validated until 1878.

37. Eugenia viridescens Ridl. in Journ. Linn. Soc., XXXVIII, 308 (1908); F.M.P., I, 752. (Fig. 19e).

Pahang: Gunong Tahan, Ridley 16031, 5,000 feet, Wray & Robinson 5338 (type collection), Wray’s Camp, Ridley 16275, Seat Point, 5,460 feet, FMS Mus. 19130 (Kloss), Padang, Corner s.n.

Known only from Gunong Tahan.

A shrub. Leaves on youngest shoots elliptic or narrowly obovate, narrowed to both ends, apex abruptly acuminate or apiculate; older leaves oblong elliptic or obovate, reaching c. 9 cm. × 6 cm., apex rounded, shortly apiculate or retuse, base rounded or narrowed, nearly sessile; midrib narrowly channelled above, bold and keeled below; primary nerves up to c. 15 pairs, faint and slightly raised above, faint below, slender, raised, c. 5 mm. apart, joining an intramarginal nerve which is usually hidden by the strongly revolute leaf margin, secondaries and reticulations faint above, secondaries below almost indistinguishable from primaries, reticulations invisible or very faint; upper surface more or less polished, olive green to dark brown

Vol. XII. (1949).
when dry, sometimes pustulate, often gland pitted, lower surface dull, pale brownish to dark brown, usually black dotted.

Panicles terminal, dense, up to c. 5 cm. long, peduncle short or almost none, branchlets rather slender, the lower ones up to c. 3 cm. long, the upper shorter, more or less angled with striate bark; flowers crowded, calyx tube c. 4 mm. long, campanulate, narrowed to a short stout pseudostalk c. 1 mm. long, the centre flower of the groups of three with a slightly longer and more slender pseudostalk than the outer two; calyx lobes broad and shallow but distinct; petals falling in a calyptra; stamens short, c. 1-5 mm. long, filaments broad at base and tapering upwards, connective gland small and inconspicuous; style short, stout. Fruit unknown.

38. **Eugenia Wrayi** King, Mat. F.M.P., No. 12, 119 (1901); Ridl., F.M.P., I, 753. (Fig. 20a).

Perak: Ulu Batang Padang, 4,900 feet, Wray 1504 (syn-type); Gunong Bubu, 5,000 feet, Wray 3859 (syntype); Gunong Korbu, 5,000 feet, Haniff 3915 (Ridley's no. 16306), 5,500 feet, Forest Dept. FMS 31447.

Selangor: Gunong Mengkuang, 5,000 feet, Robinson s.n.

Pahang: Padang, Gunong Tahan, c. 5,500 feet, Seimund 358; Gunong Batu Brinchang, 6,700 feet, SPN 23586 (Henderson), Forest Dept. FMS 36518; summit of Gunong Irau, Forest Dept. FMS 36552, 36569; Cameron Highlands, Forest Dept. FMS 23886, 25941; Gunong Benom, 6,900 feet, Forest Dept. FMS 22335.

Distrib: Endemic.

A shrub or small tree. Youngest twigs 4-angled, dark brown, smooth, older twigs terete with rough greyish bark. Leaves thickly coriaceous, broadly elliptic or elliptic ovate or elliptic obovate to subrotund, up to c. 5 cm. \(\times 3-5 \) cm., apex obtuse or retuse or with a very short blunt point, base round, sometimes subcordate, sometimes more or less narrowed; upper surface drying brown to blackish brown, punctate, lower surface paler, reddish brown, black gland dotted; midrib impressed above, broad and hardly elevate below; primary nerves numerous and hardly distinguishable from secondaries and reticulations, ascending to an obscure intramarginal nerve close to the leaf margin; venation above often obscure or invisible, sometimes slightly raised, raised and distinct below, the veins broad and closely reticulate; petiole less than 5 mm. long drying dark.

Panicles terminal, short and compact, almost hidden by the leaves, up to c. 2 cm. long and as much across, sessile or shortly pedunculate, branchlets very short and stout, crowded, more or less 4-angled; flowers greenish, sessile, usually in threes at branchlet apices, buds shortly globose

Gardens Bulletin, S.
Fig. 20. a, *E. Wrayi*; b, *E. inasensis*; c, d, *E. pahangensis*; e, *E. tahanensis*.

clavate; calyx tube funnel shaped, c. 5 mm. long, gradually narrowed to base, slightly ridged, gland dotted, the pseudostalk not distinctly marked off; lobes 5, subpersistent, broadly oblong rounded, gland dotted, c. 1.7 mm. across and 1 mm. tall; petals free (perhaps falling in a very loose calyptra), orbicular, 2–2.5 mm. diam.; stamens numerous, variable in length, reaching c. 5.5 mm., filaments rather stout, subulate, anthers ovate oblong, c. 0.5 mm. long, connective gland rather large; style rather stouter than filaments, c. 6 mm. long.

Young fruit globular, crowned by the conspicuous calyx rim and enlarged sepals, the latter disappearing before the fruit ripens. Ripe fruit more or less globose or oblong globose, c. 1 cm. diam., crowned by the short calyx rim, black or blackish brown when dry and wrinkled; pericarp in boiled fruits smooth, rather thick; seed 1, c. 0.75 cm. diam., testa thick, brown, cotyledons nearly equal, inner faces nearly plane, attached to hypocotyl near their centres by short broad stalks.

39. **Eugenia inasensis** King, Mat. F.M.P., I, No. 12, 120 (1901); Ridl., F.M.P., I, 751. (Fig. 20b).

Perak: Gunong Inas, 5,000 feet, Wray 4144, 4150, 4154.

Known only from these collections.

A small tree. Twigs rather stout, terete, compressed below nodes, bark nearly smooth, yellowish. Leaves coriaceous, elliptic, or broadly elliptic oblong, sometimes slightly obovate, from c. 5 cm. × 2 cm. to 10 cm. × 5.5 cm., apex shortly and abruptly acuminate, base tapered and decurrent on petiole; upper surface more or less polished, drying yellowish brown to blackish brown, closely and minutely punctate, lower surface dull, brownish; midrib impressed above, bold below; primary nerves numerous, slightly raised and inconspicuous on both surfaces, reticulations not visible; petiole channelled above, drying black and wrinkled, up to c. 1 cm. long.

Panicles terminal or from uppermost axils, solitary or clustered, up to c. 4 cm. long, peduncles up to c. 1.5 cm. long, branchlets short, spreading, 2–3 pairs, they and the peduncle rather stout, but thinner than twigs, 4-angled or compressed, with blackish striate bark; flowers white, sessile, in threes at branchlet ends, buds obovoid, 6–7 mm. long; calyx after expansion funnel shaped, tapering to base without a distinctly marked pseudostalk, c. 5 mm. long and 4 mm. across mouth; lobes 5, unequal, inconspicuous, the largest transversely oblong ovate c. 2 mm. across and 1 mm. tall; petals falling in a calyptra c. 4.5 mm. diam., more or less agglutinated; stamens numerous, variable in length,

Gardens Bulletin, S.
up to c. 5·5 mm. long, the filaments subulate, stout at base and tapering upwards, anthers ovate oblong, 0·5–0·8 mm. long, connective gland small; style stouter than filaments, c. 5 mm. long; ovary 2-celled. Fruit unknown.

Allied to E. pahangensis and its variety Fraseri rather than to E. subdeccussata as King suggests.

40. Eugenia pahangensis Ridl. in Journ. Linn. Soc., XXXVIII, 307 (1908); F.M.P., I, 751. (Fig. 20c, d).

Pahang: Gunong Tahan, Ridley 16015, 5,000–6,000 feet, Wray & Robinson 5454 (type collection), Padang, FMS Mus. 12244, 12249 (Kloss), SFN 20665 (Holttum), 5,300–7,000 feet, SFN 7936 (Hani ff & Nur), summit, 7,186 feet, FMS Mus. 12139, Corner s.n.

Distrib.: Endemic.

A small tree, bark greyish pinkish, slightly flaky; inner bark pale pinkish brown. **Twigs** stout, terete, compressed below nodes, bark smooth, whitish, yellowish or pale brown. **Leaves** very coriaceous, elliptic or ovate elliptic to orbicular, from c. 4·5 cm. × 4·5 cm. to 16 cm. × 8 cm., apex shortly acute, shortly and abruptly acuminate, rounded, or retuse, base rounded, sometimes subcordate, sometimes shortly and abruptly narrowed to petiole; upper surface drying olivaceous brown to blackish brown, somewhat polished, usually closely and minutely punctate, lower surface dull and paler; midrib impressed above, prominent below and keeled or longitudinally wrinkled; **primary nerves** up to c. 30 pairs, c. 0·5 to nearly 1 cm. apart, spreading, the basal ones often curving downwards, meeting in a nearly straight intramarginal nerve c. 2 mm. from leaf margin, slender and slightly elevate above, and usually quite distinct, varying from slender and elevate below and distinct to invisible, the secondaries and reticulations varying in the same manner; petiole stout, channelled above, drying black and wrinkled, up to c. 1 cm. long.

Panicles terminal or occasionally from upper axils, up to c. 6 cm. long and wide, clustered, crowded, usually pedunculate, sometimes sessile, peduncles reaching 3–5 cm. long, very stout, often as stout as twigs, compressed and angled with dark striate bark, smooth in life; branchlets usually two pairs, the lower up to c. 2 cm. long, ascending, the upper shorter and more spreading; **flowers** sessile, crowded at branchlet ends, white or greenish white, disc orange; **calyx** broadly obconic, finely gland dotted, c. 5 mm. long, 4 mm. across mouth, tapered slightly to a broad truncate base or narrowed to a very indistinct pseudostalk; lobes 5, persistent, broadly triangular acute, c. 2 mm. across and 1 mm. tall; **petals** 5, free, slightly unequal, ovate orbicular, the largest c. 3 mm. diam.; **stamens** numerous, variable in

length, reaching c. 6 mm., the filaments rather stout, subulate, anthers oblong, c. 0·8 mm. long, connective gland conspicuous, dark brown; style stouter than filaments, 4 mm. long; ovary 2-celled with several ovules.

Fruit more or less globose, smooth, with one or two well marked or faint vertical ridges, c. 2·5 cm. diam., apical umbilicus rather shallow, c. 5 mm. diam., fringed by the enlarged incurved calyx lobes and bearing the short style remains; pericarp 1–2 mm. thick; cotyledons more or less equal, superposed, smooth with rather conspicuous raised gland dots; inner faces nearly plane, attached to the hypocotyle by very short broad stalks.

E. pahangensis Ridl., var. *Fraseri* var. nov.

A *typa* foliiis tenuioribus, acuminatis, basi attenuatis, calycis lobis brevioribus differt.

Pahang: Fraser Hill, 3,000–4,000 feet, SFN 33202 (Corner), TYPE collection, holotype in Herb. Singapore.

The variety here described as new differs from the typical form in the much thinner leaves, narrowed at the base and with an acuminate apex, the more slender twigs and the shorter, smaller, more acute calyx lobes. The collector describes it as a common canopy tree 80 feet or more tall with a heavy crown as in *E. grandis*, the outer bark grey, rather pale, flaking in angular pieces, but not conspicuously, not fissured or ridged, inner bark vinaceous brown; calyx green, disc orange, petals and filaments white, petals calyptrate. *SFN 33202* was distributed from Singapore as *E. inasensis* King. It is doubtless allied to this species, but differs in the leaves not being pitted above, with more prominent nerves above, and in the different shape of the calyx with smaller, acute, not broad and shallow lobes. More material of the variety, and fruit, may show it to be a distinct species, closely allied to *E. pahangensis* and to *E. inasensis*.

41. **Eugenia tahanensis** Ridl. in Journ. F.M.S. Mus., VI, 146 (1915); F.M.P., I, 752. (Fig. 20e).

Pahang: Gunong Tahan (“top of Tahan”), Ridley 16032 (type collection), 6,000 feet, Forest Dept. FMS 42889, Corner s.n.

Known only from Gunong Tahan.

A shrub or treelet or dwarf shrub, bark grey or pinkish grey, slightly flaky, inner bark pale brown. Twigs very stout, terete, bark pale, the youngest twigs with dark bark. Leaves stiff, coriaceous, elliptic or obovate,
up to c. 10 cm. long and 7.5 cm. broad, apex rounded, retuse, or very shortly acute, base more or less narrowed, sometimes rounded and very slightly narrowed on to petiole; petiole up to c. 1.5 cm. long, dark coloured, stout, channelled above; midrib impressed above, raised below; primary nerves up to c. 9 pairs, 0.5–1 cm. apart, very fine and channelled above, slender and inconspicuous below in the type but in later collections dark coloured and more conspicuous, no definite intramarginal vein; secondaries and reticulations usually very faint or invisible on both surfaces; in the type both surfaces drying dull brown, the lower paler, in other collections the upper surface polished, dark red brown, the lower dull, paler, upper surface usually minutely punctate.

Inflorescences fascicled, terminal or from upper axils, up to c. 7 cm. long; peduncle variable in length, up to c. 4 cm., it and the branchlets compressed and striate; flowers crowded at the ends of the very short ultimate branchlets, sessile; calyx narrowly obconic, without pseudostalk, c. 5 mm. long, c. 3.5 mm. across mouth, black when dry and wrinkled; lobes 4, incurved in bud, persistent, broadly ovate, rounded, after anthesis the calyx tube campanulate; petals united in a thick calyptra; stamens numerous, up to c. 1.5 mm. long, filaments broad at base, tapering upwards, anthers broadly elliptic, connective gland rather conspicuous; style short.

Fruit broadly oblong, c. 1.75 cm. long, smooth, apex without calyx tube, umbilicus shallow, 6–7 mm. diam., fringed with the incurved enlarged calyx lobes and bearing short style remains; pericarp 1–3 mm. thick; seed more or less globose, c. 1.25 cm. diam., testa adhering to cotyledons, somewhat leathery with an outer thin membranous layer and an inner thicker pithy layer; cotyledons more or less equal, side by side, inner faces ridged and furrowed, attached near their centres by short broad stalks to the stout faintly tesselate hypocotyle which reaches the periphery of the seed.

42. **Eugenia Hoseana** King, Mat. F.M.P., No. 12, 106 (1901); Ridl., F.M.P., I, 733. **Syzygium Hoseanum** (King) Merr. & Perry in Mem. Amer. Acad. Arts & Sci., XVIII, 3, 150 (1939). (Fig. 19f).

Johore: Palace Gardens, *Ridley 11989*.

Distrib: Borneo.

A tree c. 12 m. tall. Twigs terete, compressed below nodes, the youngest quadrangular, bark smooth, pale yellow

or pale greyish yellow. *Leaves* coriaceous, elliptic, elliptic oblong or somewhat obovate, up to c. 15 cm. × 7 cm., apex abruptly caudate acuminate, base narrowed and decurrent on petiole; upper surface drying dark brown to blackish brown, somewhat polished, minutely punctate, lower surface dull, pale brown, minutely pustulate; midrib impressed above, prominent and rounded below; **primary nerves** 12–20 pairs, 1–1.5 cm. apart, impressed above, prominent below, ascending and running straight or very slightly curved to a well marked looped intramarginal nerve c. 3–5 mm. from leaf margin, with another faint loop much nearer margin; secondaries and reticulations obscure above, the secondaries below distinct but less prominent than primaries, the reticulations lax and faint; petiole less than 1 cm. long.

Inflorescences racemose, axillary and terminal, solitary or clustered, short and compact, not exceeding c. 2 cm. long, rachis angled and grooved; **flowers** sessile, white, surrounded and almost hidden by several leathery gland dotted bracts with thin margins, the outer ones ovate acuminate or ovate oblong apiculate, up to c. 9 mm. × 8 mm., the inner ones oblong ovate or obovate, shorter and blunter; **calyx** 6–7 mm. long, widely campanulate, tapered to base, the pseudostalk usually not distinct, tube wrinkled or more or less ridged below; lobes 5, concave, incurved over petals in bud but not overlapping, erect after anthesis, persistent, oblong, ovate blunt, c. 3 mm. across and 2.5 mm. tall; **petals** 4, falling as a calyptra but not agglutinated and easily separable, orbicular, c. 4.5 mm. diam.; **stamens** numerous, variable in length, up to c. 6 mm. long, filaments subulate, anthers oblong, 0.7–0.9 mm. long, connective gland small but distinct; style stouter than filaments, c. 5.5 mm. long; **ovary** 2-celled.

Fruit (? unripe) oblong globose, a little over 1 cm. diam., faintly vertically ridged, apex convex, bearing style remains, fringed by the very short calyx tube and the enlarged incurved calyx lobes; pericarp apparently leathery; seed 1, globose, 7–8 mm. diam., the rather thick crustaceous testa adhering closely to cotyledons; cotyledons unequal, inner faces gland dotted, with a well marked sharp ridge crossing the whole face, the cotyledons attached at the central point of the ridges by short stalks to the long stout hypocotyle which reaches the periphery of the seed.

Distinct in the pale polished twigs, well marked primary nerves, and the very short compact inflorescences with large and conspicuous persistent bracts.

Gardens Bulletin, S.
43. Eugenia variolosa King, Mat. F.M.P., No. 12, 107 (1901); Ridl., F.M.P., I, 736. (Fig. 21a).

Perak: Larut, within 10 feet, Kunstler 3995 (syntype); 500-800 feet, Kunstler 2796, 300-800 feet, Kunstler 3415 (syntype); Gopeng, 500-800 feet, Kunstler 6036 (syntype); Bikum Reserve, Forest Dept. FMS 368; Kledang Saiong Forest Reserve, Forest Dept. FMS 25812, 33727, 33728; sine loc., Scortechini s.n.

Selangor: Kuala Lumpur, Ridley's collector 4973 (syntype); Sungai Buloh Forest Reserve, Forest Dept. FMS 457, 2279, 3308; Weld Hill Forest Reserve, Forest Dept. FMS 936, 8261, 10841.

Distrib: Endemic.

A shrub or small tree. Young twigs slender, 4-angled, bark brown, copiously pustulate, older twigs terete. Leaves thinly coriaceous, oblong lanceolate or narrowly oblong elliptic, apex caudate acuminate, base cuneate, up to c. 18 cm. × 6 cm., upper surface drying pale brown to dark brown, pustulate and often also punctate, lower surface paler, pustulate with dark raised glands; midrib impressed above, prominent below and more or less keeled, pustulate; primary nerves up to c. 15 pairs, over 1 cm. apart, very slightly raised and very faint above, raised below, slender but very distinct, ascending, running straight or curving up to a well marked looped intramarginal nerve c. 4-7 mm. from leaf margin, with a much fainter loop c. 2 mm. from margin and a very faint one still closer; secondaries slightly less distinct below than primaries, reticulations lax and very fine; petiole rather slender, channelled above, c. 1 cm. long.

Inflorescences terminal and axillary, racemose, short, clustered, not exceeding c. 2.5 cm. long, rachis pustulate; flowers white, usually pedicelled, pedicels up to c. 5 mm. long or almost none, with a minute broad rounded subpersistent bracteole subtending the flower; buds c. 1 cm. long; calyx narrowly campanulate, tube c. 7 mm. long, conspicuously glandular pustulate, tapered to an obscure pseudo-stalk less than 1 mm. long; lobes 4, deciduous, conspicuously glandular pustulate, very unequal, the two outer broadly rounded, c. 3 mm. across and 2 mm. tall, the two inner orbicular, c. 5 mm. diam., subpetaloid; petals 4, free, reflexed after anthesis, c. 5.5 mm. long and 5 mm. broad, broadly oblong with large scattered gland dots; stamens numerous, filaments very slender, up to c. 1.5 cm. long, anthers elliptic, c. 0.4 mm. long, connective gland not visible; style slender, but stouter than filaments, c. 2 cm. long.

Fruit globular, smooth, prominently gland dotted, c. 2 cm. diam., apex convex, fringed by the short calyx rim.

Vol. XII. (1949).
Easily recognised by the pustulations on leaves, twigs and flowers, and by the very short inflorescences with narrow flowers and long, very slender stamens.

Fig. 21. a, E. variolosa; b, E. chlorantha.

Gardens Bulletin, S.

Common in lowland forest from Kedah and Penang (where it is very common on Penang Hill) to Singapore.

Distrib: Annam (ex Fl. Gen. Indo-Ch.), ? Siam, Sumatra, Borneo.

A tree reaching c. 24 m. tall, bark smooth, entire, finely lenticellate or finely creviced, sometimes with faint horizontal distant ridges, sepia or salmon colour or dull dark red; inner bark pale brown; wood dark tan yellowish, hard. *Twigs* slender, terete, compressed below nodes, bark smooth, dark brown. *Leaves* thinly coriaceous, elliptic, ovate elliptic or elliptic oblong, occasionally lanceolate, from c. 6·5 cm. × 2·5 cm. to 19 cm. × 8·5 cm., apex acuminate or caudate acuminate, base cuneate, upper surface usually drying greenish or brown to blackish brown, minutely pustulate or occasionally punctate, lower surface drying greenish or brownish, closely pustulate; midrib impressed above, elevate below; *primary nerves* numerous, c. 30 pairs, usually 3–5 mm. apart, very fine and slender, slightly raised above and obscure or faint, raised below and distinct, meeting in a fine intramarginal nerve c. 2–3 mm. from leaf margin; secondaries below hardly distinguishable from primaries, reticulations very fine, sometimes invisible; petiole rather slender, up to c. 1 cm. long.

Panicles terminal or axillary, up to c. 8 cm. long (up to 14 cm. in fruit), pedunculate or nearly sessile, branchlets rather slender, angled or compressed, usually short but reaching c. 3 cm., spreading-ascending; *flowers* fragrant, greenish white with rose red stamens, or the calyx and petals flushed deep pink, appearing crowded in the shorter inflorescences, usually in threes at branchlet ends, the centre flower on a very short stout pedicel, the outers sessile; mature buds c. 1–1·2 cm. long, clavate; *calyx* c. 8 mm. long, c. 6 mm. across mouth after anthesis, contracted just below lobes into a thick, ridged, cylindric or slightly tapering tube 5–6 mm. long; lobes 4 (sometimes 5), spreading-erect, persistent, thick, ovate triangular blunt, 3–4 mm. across base and c. 2 mm. tall; *petals* 4, free, reflexed after anthesis, then deciduous, orbicular with a short thick claw, c. 6 mm. diam.; *stamens* numerous, variable in length, reaching c.
1 cm., filaments subulate, anthers broadly oblong, c. 0.7–0.8 mm. long without connective gland; style much stouter than filaments, c. 1 cm. long; ovary 2-celled, multiovulate.

Fruit subglobose, 1–2 cm. diam., green flushed rose purple, vertically ridged when young, apical excavation deep and narrow, c. 3–4 mm. diam., fringed by the short calyx rim and the upright or reflexed, hardly enlarged calyx lobes.

The only difference that I can detect, in the herbarium, between E. chlorantha and E. Hullettiana is the larger and more spreading inflorescence of the latter. Kunstler describes the stamens of E. Hullettiana as white, slightly red towards centre, while the stamens of E. chlorantha are rose red.

Ridley remarks that E. Hullettiana is very close to E. Helferi but it is really quite distinct from that species both in foliage and flower characters.

45. Eugenia Ngadimaniana Henderson in Gardens’ Bulletin, Singapore, XI, 305, fig. 4 (1947). (Fig. 22a).

JOHORE: Sungai Kayu, Mawai-Jemaluang road, in swampy forest, SFN 32152 (Kiah).

SINGAPORE: Bukit Timah Reserve, altitude under 500 feet, SFN 36129, 37012, 37020 (Ngadiman).

A tree c. 20 m. tall, bark pale brown or fawn brown, nearly smooth with fine irregular cracks, scaling in occasional irregular pieces, with irregular longitudinal pits or dimples; inner bark thick, dull red or reddish brown. Twigs terete, with dark brown, reddish brown or greyish brown bark. Leaves thinly coriaceous, narrowly elliptic or elliptic lanceolate or oblong elliptic, apex abruptly acuminate or caudate acuminate, base long narrowed on to petiole, from c. 6 cm. × 3.5 cm. to c. 13 cm. × 5 cm.; upper surface when dry smooth, pale brown to dark brown, lower surface usually paler, with minute slightly raised gland dots; midrib impressed above in a dark coloured channel, raised below; primary nerves c. 7–13 pairs, 5–10 mm. distant, slender but distinguishable from secondaries, sunk in narrow channels above, slightly elevate below, meeting in an inconspicuous intramarginal nerve 1–2 mm. from leaf margin; secondaries below nearly as conspicuous as primaries but distinguishable from them, reticulations below usually faint; petiole slender, 1–1.5 cm. long, finely wrinkled.

Panicles terminal or from upper axils, solitary or more usually several from each axil or branchlet ends, up to c. 9 cm. long, peduncle 2–5 cm. long with pale longitudinally wrinkled bark; branchlets 2–4 pairs, the lowest up to c. 2 cm. long, the upper shorter, almost horizontal or curving upwards; flowers crowded at branchlet ends or at ends of short secondary branchlets, sessile, bracteoles oblong
lanceolate, subacute, subpersistent, c. 1-5 mm. long; buds more or less obovoid, c. 6-65 mm. long; calyx obconic, 3-4 mm. long, c. 3-5-4 mm. across mouth, without pseudostalk, lobes 5, shallow and broad, acute or subacute, inconspicuous, c. 2 mm. wide and 0-5 mm. tall; petals falling in a calyptra but not agglutinated, more or less orbicular, c. 3 mm. diam., conspicuously gland dotted; stamens up to c. 8 mm. long, anthers c. 0-2 mm. diam., connective gland inconspicuous; ovary 2-celled with several ovules in each cell.

Ripe fruit dark green slightly flushed dull purplish red at apex, oblong obovoid, obscurely ridged, c. 2 cm. long, apical umbilicus shallow, c. 3 mm. diam., bearing the 5 small incurved calyx lobes and style base; pericarp pithy leathery, c. 2 mm. thick; seed 1, testa thick, whitish pink, brittle crustaceous; cotyledons sessile, superposed, nearly equal, inner faces plane or slightly concave.

46. *Eugenia Helferi* Duthie in Hook. fil., F.B.I., II, 480 (1878); King, Mat. F.M.P., No. 12, 95; Ridl., F.M.P., I, 735. (Fig. 22b, c).

Kedah: Bukit Dundang Forest Reserve, Forest Dept. FMS 12425.

Penang: Pulau Jerejak, within 100 feet, *Kunstler 4181* (one sheet of this number in Herb. Calcutta is so labelled. All the other duplicates that I have seen bear a “Perak, Larut” label. The Penang locality is likely to be the correct one); Waterfall Gardens, *Curtis 3287, 3827, Haniff 1261, SFN 21405 (Henderson), SFN 31575 (Corner), SFN 37451 (Nauen)*; Government Hill, 500 feet, *Curtis 212*; Penang Hill, *SFN 35321 (Kiah), 2,000 feet, SFN 37677 (Nauen)*.

Distrib.: Burma, Siam.

A tree, trunk fluted at base; bark tesselately creviced into small rectangular pieces, scaling in small patches, not papery flaky, pinkish or greyish brown. Twigs terete or obscurely quadrangular, slender, bark pale brown, reddish brown or greyish, scaly. Leaves coriaceous, narrowly elliptic, elliptic oblong or ovate lanceolate or lanceolate, apex acuminate or acute, base cuneate or long narrowed, from c. 6 cm. × 1-5 cm. to c. 12 cm. × 5-5 cm., margin often wavy, thickened and cartilaginous; upper surface drying yellowish green or greenish brown, somewhat polished, lower surface duller and paler usually with black gland dots; midrib flat or very shallowly impressed above, elevate below; primary nerves up to c. 15 pairs in large leaves, spaced, slightly ascending, or more or less horizontal at leaf base, meeting a faint intramarginal nerve close to leaf margin, usually slightly elevate above, very faint or invisible, slightly elevate and faint below, secondaries and reticulations very faint; petiole slender, c. 1 cm. long, the leaf base decurrent upon it.

Fig. 22. a, *E. Ngadimaniana*; b, c, *E. Helferi*; d, *E. Graeme-Andersonii*; f, *E. anisosepala.*

Gardens Bulletin, S.
Panicles terminal or occasionally from uppermost axils, usually solitary, usually less than half length of leaves, but sometimes as long as them, spreading, shortly peduncled, branchlets short and rather crowded, rachis and branchlets with brown scaly flaky bark; flowers cream white, fragrant, sessile, usually in threes at branchlet ends, sometimes solitary, nearly 2 cm. across when expanded; buds clavate, 8–9 mm. long; calyx tube funnel shaped or narrowly campanulate, glandular, c. 6 mm. long, narrowed at base into a stout pseudostalk c. 1–1.5 mm. long; lobes 4, persistent, unequal, short, broad and rounded, the two outer c. 2–2.5 mm. across and 1 mm. tall, the two inner c. 3 mm. across and 1.5 mm. tall; petals 4, free, orbicular, c. 6 mm. diam., conspicuously gland dotted; stamens numerous, up to c. 1 cm. long, filaments subulate, slender, anthers oblong c. 0.5 mm. long, connective gland rather conspicuous; style much stouter than filaments, c. 6.5 mm. long; ovary 2-celled.

Fruit oblong or oblong globose, 1.6–2 cm. long and c. 1.5 cm. wide, almost white or pale greenish white with minute pale green dots, crowned by the 4 persistent, incurved, enlarged, fleshy calyx lobes; pericarp firm, not pulpy, sweet, c. 3–4 mm. thick; seed 1, testa adhering to cotyledons, brittle crustaceous; cotyledons conspicuously gland dotted, superposed, inner faces slightly concave, attached to hypocotyle near their centres by short stalks.

The pericarp of the ripe fruit is often partially nibbled away, perhaps by squirrels, the seed being left untouched with testa intact.

47. Eugenia Graeme-Andersoniae Ridl. in Journ. F.M.S. Mus., X, 134 (1920); F.M.P., I, 743. (Fig. 22d).

Kelantan: banks of Chaning river, Ridley s.n. (type collection); Sungai Keteh, SFN 192030 (Nur); Kuala Endong, SFN 10162 (Haniff); Sungai Galas at Gua Musang, SFN 22596 (Henderson).

Pahang: Kuala Tahan, Seimund s.n.; Sungai Tahan, Corner s.n.

Distrib: Endemic.

A small tree with pendent branches. Twigs slender, the youngest quadrangular, the older terete and compressed below nodes, bark smooth, pale grey or pale brown. Leaves thinly coriaceous, deflexed, narrow oblong lanceolate, up to c. 17 cm. × 3.5 cm., apex long acuminate, base narrowed; upper surface drying greenish brown to blackish brown, dull, minutely punctate, lower surface paler, minutely glandular pustulate; midrib narrowly impressed above, prominent below; primary nerves fine, very numerous and close and parallel, ascending to a fine intra-marginal nerve c. 1 mm. from leaf margin with another

Vol. XII. (1949).
fainter loop very close to the margin; venation usually slightly elevate and visible above and below but more distinct below, the close reticulation visible below but finer than primaries; petiole slender, drying black, up to c. 1 cm. long.

Inflorescences axillary in axils of all leaves and terminal, short and erect, not exceeding c. 3 cm. long, branchlets short, angled, with dark bark; flowers usually in threes at branchlet ends, sessile, buds narrowly obovoid, 8–10 mm. long; calyx funnel shaped before anthesis, somewhat campanulate after, c. 6 mm. long, somewhat ridged, tapering to an obscure or distinct pseudostalk 1–25 mm. long; lobes 4, unequal, erect, persistent, the two outer triangular blunt, c. 1-5 mm. across base and 1 mm. tall, the inner ones broadly ovate rounded, c. 3 mm. across and 2 mm. tall; petals 4, free or falling in a loose calyptra but not agglutinated, broadly ovate orbicular, c. 4 mm. diam., sparsely but conspicuously gland dotted; stamens numerous, up to nearly 1 cm. long, filaments slender, subulate, anthers broadly elliptic, c. 0-4 mm. long, connective gland inconspicuous; style stouter than filaments and longer than them.

Fruit white when ripe, oblong ovoid, c. 2-5 cm. long and 1-5 cm. across, apical umbilicus deep, 4–5 mm. diam., fringed by the enlarged calyx lobes; pericarp pulpy, rather thick; seed 1, oblong ovoid, c. 1-6 cm. long, cotyledons nearly equal, superposed, gland pitted, inner faces conspicuously gland dotted, one slightly convex, the other slightly concave, attached to hypocotyle near their centres by short broad stalks.

A riverside tree or bush, distinctive in its long narrow deflexed leaves and short erect axillary inflorescences.

48. Eugenia glauca King, Mat. F.M.P., No. 12, 102 (1901); Ridl., F.M.P., I, 737.

Penang: Penara Bukit, Curtis 1152 (syntype); road to Spout, 700 feet, Curtis 2223 (syntype), 2778.

Dindings: Lumut, Ridley 3086 (syntype).

Malacca: Bukit Bruang, Derry 1104 (syntype); Sungai Udang, Derry 1238; sine loc., Griffith K.D. 2416.

Johore: foot of Gunong Panti, Corner s.n.

Singapore: Bukit Timah, SFN 33563, 34954 (Corner); SFN 35941 (Ngadiman), SFN 34780, 34789, 35945, 35946, 36180 (Henderson).

Distrib: Endemic.

A tree reaching c. 45 m. tall but usually less, with slight buttresses; bark nearly smooth or longitudinally creviced, or in very large trees slightly fissured, pustulate, scaling off in long irregular pieces, pinkish buff or dull greyish brown to reddish brown; inner bark thick, pale pinkish brown to dark pinkish red. Twigs slender, terete,
with brown or red flaky bark. *Leaves* coriaceous, oblong lanceolate, oblong ovate, oblanceolate, obovate or elliptic, variable in size, up to c. 11 cm. × 5 cm., apex blunt or with a short blunt point, base cuneate; upper surface drying olivaceous or reddish or blackish brown, polished, the lower glaucous in life and usually also when dry; midrib flat above or slightly impressed, or slightly raised and channelled, elevate below; *primary nerves* up to c. 15 pairs, spaced, fine but elevate on both surfaces but more distinct below, ascending rather irregularly to a fine intramarginal nerve c. 1–2 mm. from leaf margin; secondaries and reticulations usually visible above, distinct below and often hardly distinguishable from primaries; petiole drying black, up to c. 6 mm. long.

Inflorescences few flowered, terminal and axillary, of clustered racemes or few-branched panicles, up to c. 10 cm. long, rachis and branchlets slender, angled and compressed, with dark striate bark; *flowers* sessile, in threes at ends of branchlets, or solitary, buds globose clavate, 7–8 mm. long; *calyx* after anthesis widely campanulate, c. 7 mm. long and 5 mm. across mouth, narrowed abruptly into a slender pseudostalk c. 3 mm. long; lobes 4, quickly deciduous, rather thick, transversely oblong ovate, c. 3 mm. across and 2 mm. tall; *petals* 4, free, ovate orbicular, rather thick textured, c. 5 mm. diam., reflexed after anthesis; *stamens* numerous, c. 7 mm. long, filaments slender, subulate, broadened at base, anthers oblong elliptic, c. 0.6 mm. long, connective gland inconspicuous; *style* much stouter than filaments, c. 10-mm. long; *ovary* 2-celled with few ovules in each cell.

Fruit green when ripe, more or less globose, oblong globose or slightly pyriform, c. 2.5–2.75 cm. diam., faintly vertically ridged, apical umbilicus shallow, c. 4 mm. diam., the *calyx* rim very short, without *calyx* lobes; pericarp 2.5–5 mm. thick; seed 1, more or less depressed globose, c. 2 cm. diam., testa rather thick, rather brittle, adhering closely to the smooth shining surface of cotyledons; cotyledons nearly equal, superposed, inner faces pale, gland dotted, nearly plane, sessile, attached to hypocotyle near periphery of seed.

Dindings: Lumut, Ridley 8386 (syntype), Ridley s.n.; Pulau Sembilan, Ridley 3108 (syntype); Pangkor Island, Curtis 3440 (syntype), Forest Dept. FMS 10208; sine loc., Forest Dept. FMS 1603.

Perak: Pulau Lallang, Seimund s.n.

Johore: Pulau Setindan, off Mersing, SFN 32232 (Corner).

Distrib: Endemic.

Vol. XII. (1949).
In the herbarium the only distinguishing point between the typical form and the variety is the non-glaucous lower surface of the leaf of the latter. The typical form tends to have less acuminate and more obovate leaves, but there is a great variation in the leaf shape in both forms and some collections of the variety have leaves almost indistinguishable from those of the typical form, except that they are not glaucous. There are, however, certain differences in the barks of the two forms. That of the typical form is described above. The variety has rather deeply irregularly fissured and flaky bark, fawn brown to greyish brown; inner bark brown to purplish-pink-brown.

49. **Eugenia anisosepala** Duthie in Hook. fil., F.B.I., II, 481 (1878), pro parte; King, Mat. F.M.P., No. 12, '96, pro parte; Ridl., F.M.P., 1, 736. (Fig. 22f).

Kedah: Gurun, *Forest Dept. FMS* 9021.

Selangor: Ginting Simpah, *Forest Dept. FMS* 10246; Ginting Bidai, *Ridley s.n.*

Negri Sembilan: Sungai Raya, *Forest Dept. FMS* 573; Pasir Panjang, *Forest Dept. FMS* 580.

Pahang: Kuantan, *Forest Dept. FMS* 6656.

Distrib: Endemic.

A tree. Twigs slender to rather stout, terete, compressed below nodes, bark smooth, greyish or brownish. *Leaves* coriaceous, elliptic or oblong lanceolate, up to c. 11 cm. × 5-5 cm., apex acuminate, base cuneate; upper surface somewhat polished, drying dark brown, sparsely glandular pustulate, lower surface reddish or dark brown; midrib impressed above, prominent below; *primary nerves* up to c. 14 pairs, spaced, fine and slightly elevate above, fine and usually quite distinct below, curving up to a fairly distinct intramarginal nerve c. 3 mm. from leaf margin; secondaries and reticulations usually visible above and distinct below but finer than primaries; petiole rather slender, up to c. 6 mm. long.

Panicles terminal, corymbose, usually shorter than leaves but reaching c. 10 cm. long, branchlets numerous, spreading-ascending, rather stout, angled and compressed with smooth bark; *flowers* sessile, usually in threes at the ends of the short ultimate branchlets, rather crowded, buds clavate, c. 8–10 mm. long; *calyx* more or less campanulate or funnel shaped, nearly 10 mm. long, contracted below into a pseudostalk 3–4 mm. long; lobes 4, unequal, subpersistent, the two outer broad and rounded, c. 3 mm. across and 2-5 mm. tall, the two inner subpetaloid, thinner, suborbicular, c. 4-4-5 mm. diam.; *petals* 4, free, ovate orbicular, c. 4-4-5 mm.

Gardens Bulletin, S.
diam.; stamens numerous, filaments slender, broadened at base, up to c. 6–7 mm. long, anthers broadly oblong, c. 0.5 mm. long, without connective gland; style stouter than filaments, c. 8 mm. long; ovary 2-celled. Fruit unknown.

Not a very well known species, but distinguishable by its corymbose panicles with rather stout and smooth barked branchlets, and the subpetaloid inner calyx lobes.

Maingay K.D. 754 in Herb. Calcutta has been written up by Duthie as _E. anisosepala_. It is _E. Griffithii_ Duthie. On the sheet in Herb. Calcutta a pencilled field note reads "a very large tree". This remark is attributed by Duthie to Griffith. There is obviously some confusion in the original diagnosis of the species and also in the Materials, for King cities _Maingay K.D. 754_ as well as _Maingay K.D. 753_ (in part). This latter citation is correct, for the K.D. number was given to two specimens of Maingay's collecting, _Maingay 1558_ which is _E. anisosepala_ and _Maingay 3012_ which is _E. laevicaulis_ Duthie.

Johore: Sungai Kayu, Mawai-Jemaluang road, _SFN_ 32036 (Kiah), _SFN_ 29300 (Corner).

Known only from these collections in the fresh water swamp forests of South Johore.

A _tree_ c. 12 m. tall, twigs stout, terete, with smooth, sometimes polished, grey brown or pale brown or greyish white bark. _Leaves_ very coriaceous, ovate or orbicular, broadly ovate oblong, broadly elliptic, or elliptic oblong, up to c. 10 cm. long and 9 cm. broad, base very shortly cuneate, or rounded and very shortly and abruptly narrowed on to petiole, apex rounded or shortly and bluntly acute or apiculate; petiole c. 1 cm. long; midrib impressed above, elevate below; _primary nerves_ fine, raised on both surfaces, slightly less conspicuous above than below, about 7-10 pairs, meeting in an intramarginal loop 3–5 mm. from margin, secondaries and reticulations raised on both surfaces and almost as distinct as primaries.

Inflorescences short and dense, terminal, on stout peduncles c. 2-5 cm. long; peduncles and rachis as stout as twigs, more or less compressed, secondary branchlets also stout and angled, c. 1.5 cm. long, the flowers crowded at their apices or on tertiary branchlets c. 3 mm. long. _Flower_ buds obovoid, c. 7–8 mm. long, _calyx_ narrowly campanulate, narrowed rather abruptly to a stout pseudostalk; _calyx_ tube including pseudostalk 5–6 mm. long, lobes 5, distant, triangular ovate blunt, c. 1 mm. tall; _petals_ calyptrate,

Vol. XII. (1949).
leathery; stamens 3.5–4 mm. long, anthers c. 0.4 mm. diam., connective gland dark brown, conspicuous; ovary 1–2–locular, multiovulate; fruit unknown.

A species characterised by the broad thick leaves with well marked venation and the stout densely flowered panicles.

E. Kiahii Henderson var. angustifolia var. nov. (Fig. 23).

A typa foliis tenuioribus, angustioribus, inflorescentiis maioribus, ramis paniculæ gracilióribus, floribus leviter minoribus differt.

Johore: Sungai Sedili, SFN 3692 (Ngadiman), TYPE collection, holotype in Herb. Singapore; Pengkalan Raja peat forest, Pontian, SFN 36668 (Ngadiman).

At first sight this variety looks very different from typical E. Kiahii in the narrower leaves drying paler, the larger inflorescence with much more slender branchlets, and in the slightly smaller flowers, but the flowers correspond closely in shape and structure with those of the typical form, and the venation in both forms is very similar. SFN 36668 from the peat forest at Pontian is in very young fruit, the flowers having lost their petals and stamens and the ovary beginning to swell up. The inflorescence branchlets of this collection are appreciably stouter than those of the type, and the flowers apparently not so crowded.

According to the field note the type collection of the variety is a tree of 90 ft. tall, stilt-rooted ("jangkang"), flowers white. A small bark specimen shows a smooth dull red or greyish brown bark about 5–6 mm. thick with the outer layers thinly papery flaky.

51. **Eugenia Burkilliana** King, Mat. F.M.P., No. 12, 94 (1901); Ridl., F.M.P., I, 735. (Fig. 24e).

Perak: Asam Kumbang, Wray 2785 (syntype); Taiping, Wray 3070 (syntype); Gopeng, 500–800 feet, Kunstler 4719 (syntype), 300–500 feet, Kunstler 6186 (syntype).

Distrib: Endemic.

A tree up to c. 18 m. tall. Twigs terete or obscurely quadrangular with raised lines on the angles, bark nearly smooth, or striate, brownish or blackish brown. Leaves coriaceous, oblong lanceolate, up to c. 10 cm. × 3.5 cm., apex acuminate, base cuneate; upper surface drying greenish brown or pale brown, somewhat polished, minutely and closely punctate, lower surface about the same colour, with raised black gland dots; midrib impressed above, elevate below; primary nerves about 10 pairs, fine, spaced, ascending, meeting in a rather irregularly looped intra-marginal nerve 3–5 mm. from leaf margin, with another

Gardens Bulletin, S.
much fainter one about 1 mm. from margin; secondaries and reticulations quite distinct but distinguishable from primaries; all the venation elevate and distinct on both surfaces; petiole slender, up to c. 1.2 cm. long.

Panicles terminal, almost or quite sessile, much branched from near base, many flowered, c. 4 cm. long and 6 cm. diam., branchlets ascending, 4-angled and compressed, with brown bark, the primary branchlets rather stout, the secondary thinner; flowers white, in threes at ends of short

Vol. XII. (1949).
tertiary branchlets, the outer flowers of the triads usually shortly pedicellate and the centre one sessile, buds clavate, c. 1 cm. long; calyx funnel shaped, 8–10 mm. long, striate, c. 4 mm. across mouth, gradually narrowed to a pseudostalk c. 3 mm. long; lobes 4, persistent, slightly unequal, bluntly rounded triangular, the larger c. 3 mm. across and 2 mm. tall, thick textured, sparsely but conspicuously gland dotted; petals 4, free, orbicular, 4–4.5 mm. diam., thin textured, with a few large gland dots; stamens numerous, up to c. 11 mm. long, filaments slender, subulate, anthers very small, ovate, c. 0.3 mm. long, connective gland conspicuous; style considerably stouter than filaments, c. 4.5 mm. long. Fruit unknown.

The following fruiting specimen may belong here. It differs in having a longer and laxer inflorescence and paler bark on the twigs:

PERAK: Kota, Wray 1954.

E. Burkilliana King var. *garcinifolioides* var. nov. (Fig. 24a).

A typa inflorescentiis laxioribus longioribusque, foliis multo maioribus (ad 18 cm. longis et 8.5 cm. latus) distinguenda.

PAHANG: Rompin, Forest Dept. FMS 15421, TYPE collection in Herb. Kepong.

Distrib: Endemic.

This variety has exactly the leaves of *E. garcinifolia* King, but the flowers are those of *E. Burkilliana*.

52. **Eugenia Duthieana** King, Mat. F.M.P., No. 12, 103 (1901); Ridl., F.M.P., I, 731. (Fig. 25a).

In hill forest in Kedah, Penang and Perak, up to 4,300 feet, and in lowland forest in the south of the Peninsula from Malacca and Pahang to Singapore. Endemic.

A tree up to c. 21 m. tall, trunk very slightly fluted at base or narrowly buttressed to c. 1.5 m.; bark smooth or pustulate over large areas or with longitudinal crevices, flaking in long pieces, pale reddish brown to warm brown; inner bark rather thick, fibrous and dimpled where exposed by stripping of outer layers, sometimes with a green layer immediately below outer layer, reddish brown or reddish buff; wood pale buff. Twigs rather slender, terete, with brownish or greyish somewhat flaky bark. Leaves coriaceous, elliptic, elliptic lanceolate or ovate elliptic, apex acuminate or caudate acuminate, base cuneate, up to c. 15 cm. × 6.5 cm., upper surface drying dull, pale brown to blackish brown, smooth, lower surface brown or reddish brown, usually paler than upper; midrib narrowly impressed

Gardens Bulletin, S.
Fig. 24. a, *E. Burkiliiana* var. *garcinifolioides*; b, *E. Griffithii*; c, *E. Burkiliiana*.

above, elevate below; primary nerves up to c. 8 pairs, 1-2 cm. apart, impressed above and very faint, slender but elevate and distinct below, ascending and curving slightly up to a well marked intramarginal nerve far from leaf margin (4-7 mm.), with a much fainter loop closer to margin; secondaries and reticulations very faint or invisible above, slightly raised below but much less distinct than primaries; petiole c. 5-7 mm. long, the leaf blade decurrent upon it.

Inflorescences terminal, of clustered or solitary racemes up to c. 7 cm. long, the rachis slender, 4-angled, with black bark; flowers white, few, sessile, one or two pairs of flowers on the rachis with 3 or sometimes 5 terminal ones, buds clavate, c. 7 mm. long; calyx after anthesis rather widely funnel shaped, c. 5 mm. long, ridged, tapered to a pseudostalk c. 1-5 mm. long; lobes 4, subpersistent, broadly ovate rounded, c. 2-3 mm. across and 1-5-2 mm. tall; petals 4, free, orbicular, rather thick textured with thin margins, c. 3 mm. diam.; stamens numerous, filaments slender, subulate, up to 5-6 mm. long, anthers oblong elliptic, c. 0-5 mm. long, connective gland small; style much stouter than filaments, c. 7 mm. long; ovary 2-celled.

Fruit globular or slightly pyriform, c. 2 cm. long, rugulose when dry, apical umbilicus wide and shallow, c. 5 mm. diam., with the exceedingly short calyx rim without remains of calyx lobes; pericarp very thick, seed 1, more or less globose, inner cotyledon faces nearly plane, attached to hypocotyl by short stalks.

Rather widely distributed in lowland and hill forest from Penang to Singapore.
Distrib: Borneo.

A tree up to c. 24 metres tall, bark greyish or pale pinkish greyish buff, slightly cracked or creviced; inner bark pinkish. Twigs slender, terete, with brown and rather flaky bark. Leaves coriaceous, narrowly elliptic or oblong elliptic, apex acute or shortly acuminate, base broadly or narrowly cuneate, up to c. 19 cm. long and 7-5 cm. broad, purple when young; upper surface drying brown to blackish brown, more or less polished, often punctate, lower surface brown; midrib impressed above, elevate below; primary

Gardens Bulletin, S.
nerves up to c. 15 pairs, 1–1.5 cm. apart, spreading ascending, meeting a distinct intramarginal nerve c. 3–5 mm. from leaf margin, impressed or slightly elevate or very obscure above, usually prominent below, sometimes rather fine and faint, secondaries below usually distinct but much finer than primaries, reticulations very fine to almost invisible; petiole up to nearly 1 cm. long.

Inflorescences rather variable, terminal or axillary, often clustered, of lax racemes or panicles, reaching c. 17 cm. long but usually much less, rachis and branchlets slender, dark coloured, compressed and angled; the racemes with distant clusters of flowers, the panicles with distant slender branchlets up to c. 3 cm. long, the flowers clustered at their ends; flowers sessile, white or pale green with white stamens, buds globose clavate c. 1 cm. long; calyx rather narrowly campanulate, c. 1 cm. long, rather abruptly narrowed into a pseudostalk more than half its length; lobes 4, unequal, deciduous, the two outer thick textured, very broad and rounded, c. 3 mm. across and 1.5 mm. tall, the two inner thinner, subpetaloid, gland dotted, overlapping in bud, c. 4–5 mm. across and 3 mm. tall; petals 4, free, ovate orbicular, sparsely but conspicuously gland dotted, 4–5 mm. diam.; stamens numerous, filaments slender, subulate, up to c. 7 mm. long, anthers elliptic oblong, c. 0.6 mm. long, connective gland small; ovary 2-celled.

Fruit more or less globose, c. 2 cm. diam., corrugate-rugulose when dry, apical umbilicus c. 4 mm. diam., fringed by the very short calyx rim, without calyx lobes; pericarp very thick, seed 1, cotyledons side by side, nearly equal, inner faces gland dotted, nearly plane, attached to the hypocotyle near their centres by short stalks.

The material which I have placed here constitutes perhaps an assemblage of plants rather than a well marked species. The material available is not very good and the description has been made from sheets which match most closely the type. E. Griffithii is perhaps nearest to E. Duthieana but differs in the leaves being longer in proportion to their width, with more primary nerves, in the tendency of the inflorescence to branch and become paniculate and in the longer pseudostalk of the calyx.

54. Eugenia Thumra Roxb., var. penangiana King, Mat. F.M.P., No. 12, 92 (1901); Ridl., F.M.P., I, 734. (Fig. 25b).

Penang: Highlands, Curtis 3601; Waterfall, Curtis 2410 (type collection); Penang Hill, Nauen s.n.

A medium sized tree. Twigs slender, quadrangular or more or less terete with raised lines between the nodes, bark

Vol. XII. (1949).
Fig. 25. a, E. Duthieana; b, E. Thumra var. penangiana; c, E. Swettenhamiana; d, E. subhorizontalis; e, E. Ridleyi.

Gardens Bulletin, S.
of youngest shoots dark and smooth, that of older parts brownish or greyish, rough. Leaves coriaceous, elliptic, oblong elliptic, or oblong lanceolate, up to c. 13 cm. × 6 cm., apex acute or subacute or shortly and abruptly acuminate, base cuneate and narrowed on to petiole; upper surface drying lead brown to blackish brown, dull, minutely pustulate, lower surface dark brown, closely pustulate; midrib narrowly impressed above, prominent below and pustulate; primary nerves 8–9 pairs, finely impressed and faint above, rather prominent below, ascending and curving up slightly or running straight to a well marked shallowly looped intramarginal nerve c. 4–5 mm. from leaf margin, with an exceedingly faint series of loops close to the margin; secondaries and reticulations invisible above, secondaries below not so prominent as primaries, reticulations lax and very faint; petiole rather stout, drying black and wrinkled, c. 1 cm. long.

Panicles terminal and axillary, clustered or solitary, peduncled, up to c. 14 cm. long, branchlets 1–3 pairs, spreading, slender, they and the rachis 4-angled or compressed; flowers white, clustered at ends of branchlets, or at ends of shorter secondary branchlets; buds globose clavate, 5–6 mm. long; calyx funnel shaped, c. 5 mm. long, more or less ridged, contracted rather abruptly into a pseudostalk c. 2.5 mm. long; lobes 4; ?subpersistent, very unequal, the two outer thick, broad, rounded, c. 2 mm. across and 1 mm. tall, the two inner subpetaloid, overlapping in bud, thin, broadly ovate orbicular retuse, c. 4 mm. diam.; petals 4, free, ovate orbicular or ovate triangular, c. 4 mm. across; stamens numerous, up to c. 6 mm. long, filaments slender, subulate, wrinkled, anthers broadly oblong or oblong elliptic, 0.5–0.6 mm. long, connective gland conspicuous; style much stouter than filaments, c. 5 mm. long; ovary 2-celled. Fruit unknown.

I have seen no authentic material of E. Thumra Roxb., and so have accepted King’s placing of our plant. I have examined a series of specimens placed under E. Thumra in Herb. Dehra Dun and these agree well with our plant in inflorescence and flower characters but differ in having the primary nerves raised above, not sunk, and in the terete twigs without raised lines between the nodes. Our plant appears close to E. Griffithii Duthie and E. Ridleyi King but differs from both in the venation and in having raised lines on the twigs, and from the former in the larger and more branched inflorescence and smaller flowers.

Vol. XII. (1949).
55. Eugenia Swetenhamiana King, Mat. F.M.P., No. 12, 126 (1901), pro parte,
emend. (Fig. 25c).

Perak: near Gunong Pondok, 500–800 feet, Kunstler 7590 (lectotype).

Arbor 18–21 m. alta. _Ramuli_ tereti, cortice pallide fusco. _Folia_ ob lanceolata, 10–11 cm. longa, c. 4 cm. lata, apice breviter et obtuse acuminata, basi sensim ad petiolum attenuata; costa media supra impressa subtus prominente, _nervis primariis_ utrinque c. 6–8, supra impressis, subtus prominulis, inter se c. 1 cm. distantibus, venae intramarginali a margine 3–5 mm. remota conjunctis; petioli 5–6 mm. longi. _Paniculae_ terminales, 2–4 fasciculatae pedunculatae, 5–8 cm. longae, ramulis laxis ad 1 cm. longis. _Flores_ in apice ramulorum 3 vel 1, sessiles vel pedicellati. _Calycis_ tubus infundibuliformis, brevistipitatus, ad 4 mm. longus, lobis 4 late rotundis c. 2 mm. diam. _Petala_ 4, libera, calycis lobis sub-aequalia.

King included two distinct species here and one of them, represented by Scortechini's collection, was redescribed by Ridley as _E. cordifoliata_. Ridley, in a note in F.M.P., I, p. 755, points out that King's species is a mixture and that the portion that he rejects does not appear to be a Myrtaceous plant (there is an obvious _lapsus calami_ in this note, for Ridley refers to Scortechini's plant when he means that collected by Kunstler).

Kunstler's specimens are certainly not good, the flowers being in bud and somewhat crushed, but enough of the structure can be made out to be certain that they represent a species of _Eugenia_ which has the same shape of calyx tube and the same large rounded sepals and free petals as _E. cordifoliata_. The latter, however, has larger flowers and leaves with cordate, not narrowed bases.

King's description was based mostly on Kunstler's specimens, but also to some extent on Scortechini's, and a new description has therefore been made.

56. Eugenia subhorizontalis King, Mat. F.M.P., No. 12, 112 (1901); Ridl., F.M.P., I, 733. (Fig. 25d).

Perak: Asam Kumbang, Wray 2118 (syntype); Taiping, Wray 2097 (syntype).

Negri Sembilan: Sungai Raya, Forest Dept. FMS 573.
Distrib: Siam, Bangka, Sumatra (fide King).

A small _tree_. _Twigs_ slender, terete, smooth, blackish brown when dry. _Leaves_ thinly coriaceous, oblong or elliptic oblong, apex shortly acuminate, base cuneate and decurrent on petiole, margins more or less recurved, 8–18 cm. long and 3.5–6 cm. broad, upper surface drying olivaceous to blackish brown, somewhat polished, lower surface

Gardens Bulletin, S.
brown or reddish brown, dull; midrib impressed above, prominent below; primary nerves up to c. 20 pairs 0-5-1 cm. apart, very fine and impressed above, fine below but elevate and distinct, subhorizontal, curving slightly up to a distinct intramarginal nerve c. 2-4 mm. from leaf margin; secondaries and reticulations very faint above, slightly impressed, elevate below and rather distinct; petiole up to c. 1-5 cm. long.

Panicles terminal and axillary, lax, up to c. 8-9 cm. long, branchlets few, distant, spreading-ascending, slender and compressed with dark striate bark; flowers white, sessile, in clusters of 3-6 at branchlet ends, not crowded, buds globose clavate to ovoid, c. 8-10 mm. long; calyx funnel shaped, 6-8 mm. long, narrowed at base to a pseudostalk 2-3 mm. long; lobes 4, nearly equal, broad and rounded, c. 2 mm. across and 1 mm. tall; petals calyptrate, more or less agglutinated; stamens numerous, filaments slender, subulate, c. 5 mm. long, anthers oblong, c. 0-5 mm. long, connective gland inconspicuous; style stout at base, tapering upwards, c. 4 mm. long. Fruit unknown.

No expanded flowers of this species have been seen and the material available is scanty. The subhorizontal primary nerves and the lax and rather long inflorescences with slender branchlets are distinguishing points.

57. Eugenia Ridleyi King, Mat. F.M.P., No. 12, 98 (1901); Ridl., F.M.P., I, 785; Corner, Wayside Trees of Malaya, p. 503, fig. 168. (Fig. 25e).

Widely distributed from Kedah to Singapore but apparently nowhere very common except in Singapore.

Distrib: Siam (fide Craib).

A tree up to c. 30 m. tall, without buttresses; bark irregularly fissured, flaking in thick irregular pieces, not papery flaky, light brown or buff-red; inner bark thick, fibrous, dark red with dark red sap; wood rather soft, pale buff. Twigs slender, terete, the youngest with smooth, almost black bark, the older with greyish or brownish smooth or slightly rough bark. Leaves deep blue when young, thinly coriaceous, ovate lanceolate or oblong lanceolate, apex acuminate, base cuneate, from c. 8 cm. X 3 cm. to 18 cm. X 6 cm.; upper surface dull, drying dark brown to blackish brown, minutely punctate, lower surface paler brown, sometimes glandular pustulate; midrib impressed above, prominent below; primary nerves 6-10 pairs, 1-2 cm. apart, very slightly raised and channelled above, faint, prominent below, ascending and curving upwards to form a well marked looped intramarginal nerve c. 4-10 mm. from leaf margin, with a very faint loop close to margin,

Vol. XII. (1949).
secondaries below almost as prominent as primaries, reticulations lax, usually very faint; petiole usually c. 1 cm. long.

Panicles terminal and axillary, often clustered, up to c. 8 cm. long, usually shortly peduncled, branchlets distant, 2–3 pairs, spreading, they and rachis slender, angled and compressed, with dark bark; flowers clustered at branchlet ends, buds globose clavate, c. 7 mm. long and 6 mm. across; calyx broadly funnel shaped, abruptly tapered to a pseudostalk 1–2 mm. long, green with minute pale gland dots; lobes 4, pale green, broadly ovate rounded, c. 4 mm. across at base and 2 mm. tall, reflexed after anthesis, persistent; petals 4, falling as a calyptra but not agglutinated and very easily separable, pale green with paler margins, more or less orbicular, c. 4 mm. diam.; disc green with thickened corrugate inner margin; stamens numerous, filaments slender, subulate, green, c. 5 mm. long, anthers very small; style subulate, green, stouter than filaments, c. 5 mm. long, tapering upwards from a stout pale conical base; ovary 2-celled with several ovules in each cell.

Fruit when ripe dull green slightly flushed brownish red, globose or ovoid, occasionally somewhat obovoid, up to c. 2 cm. diam., apical umbilicus shallow and wide, c. 8–9 mm. diam., with the 4 incurved somewhat enlarged and fleshy broad blunt calyx lobes on its margin, and style base; pericarp white, fleshy, slightly juicy, slightly sweet, c. 3 mm. thick; seed more or less globular, c. 15 mm. diam., testa pale green, thick, pithy and juicy, adhering strongly to the irregular surface of the cotyledons; cotyledons pale green, more or less equal, stalked, hypocotylie large, cylindrical, pink, lying in a groove and reaching almost to the periphery of the seed.

The green flowers and deep blue young leaves make this species a distinct one in the field.

58. Eugenia Dyeriana King, Mat. F.M.P., No. 12, 88 (1901), et var. oblonga King, loc. cit.; Ridl., F.M.P., I, 732. E. Clarkeana King, loc. cit., 93. E. corrugata King, loc. cit., 93; Ridl., F.M.P., I, 732. (Fig. 26).

Common from Kedah to Johore in lowland and hill forest, common in Perak from sealevel to 4,000 feet, and in hill forest at Cameron Highlands, Pahang.

Distrib: Lower Siam.

A tree up to c. 22 m. tall. Twigs rather stout, terete, smooth, bark brownish or greyish, the youngest shoots compressed, with dark bark. Leaves thickly coriaceous, elliptic, elliptic oblong or oblong, apex acute or shortly and abruptly acuminate, base cuneate or abruptly narrowed on to petiole, usually large, up to c. 26 cm. × 10 cm., upper

Gardens Bulletin, S.
Fig. 26. *E. Dyeriana.*

surface drying dark to blackish brown, more or less polished, sometimes minutely punctate, lower surface warm red brown, more or less shining; midrib shallowly impressed above, prominent and rounded below; primary nerves up to c. 20 pairs, spaced, impressed above, often inconspicuous, bold below and drying dark, ascending and running straight or curving up to a bold shallowly looped intramarginal nerve 4–6 mm. from leaf margin; secondaries and reticulations usually very faint or invisible above, faint below, but if distinct, always much less prominent than primaries; petiole stout, up to c. 1 cm. long, widely channelled above.

Panicles terminal or axillary, often clustered, variable in length but nearly always shorter than leaves, reaching 15 cm., but usually not more than 9–10 cm., usually pedunculate, rachis usually rather stout, 4-angled, with dark bark, bearing usually about 2 pairs of short stout compressed, spreading and distant branchlets; flowers crowded at branchlet ends, sessile, buds obovoid, c. 7 mm. long; calyx after anthesis widely funnel shaped, c. 6 mm. long, slightly contracted near base into a very stout obscure pseudostalk; lobes 4, deciduous, unequal, the outer two very thick textured, transversely oblong, c. 5 mm. broad and 3 mm. tall, inners subpetaloid, thinner textured, suborbicular, c. 5 mm. diam.; petals 4, free, orbicular, c. 6 mm. diam., gland dotted; stamens numerous, filaments slender, subulate, reaching c. 1 cm., anthers elliptic or oblong elliptic, almost 1 mm. long, connective gland conspicuous; style stouter than filaments, c. 7 mm. long; ovary 2-celled, multiovulate.

Fruit globular to depressed globular, smooth or vertically ridged or corrugate, up to c. 6 cm. diam., apical umbilicus small, with a very short calyx rim without remains of calyx lobes; seeds 1–5.

Ridley reduced E. Clarkeana King to this species, I believe correctly, although Craib, Fl. Siam. Enum., I, 635, retains it provisionally. E. corrugata King is a little known plant described from fruiting specimens and I believe it to be merely E. Dyeriana with ripe fruit. The material shows considerable differences in size and ridging of the fruits, depending partly on their age, but two fruiting specimens from Cameron Highlands, both with ripe fruit (picked up from the ground but collected by an experienced native collector), show that the fruit may be almost smooth, or with only very faint, or well marked vertical ridges and corrugations. The largest fruits, which may be 6 cm. diam., and are usually depressed globular, may contain 3 or 5 seeds. Smaller fruits c. 2–2.5 cm. diam., on the same individual, apparently also ripe, may contain but one seed. Very young fruits may be either smooth or vertically ridged.

Gardens Bulletin, S.
Fruit of Forest Dept. FMS 12112 is c. 3 cm. diam., depressed globose, smooth or faintly vertically ridged, crowned by short remains of calyx tube; pericarp thick, tough, 5 mm. or more; seed 1, cotyledons very unequal, the larger with a triangular recess into which the other fits.

Fruit of Kunstler 6822 depressed globose, cotyledons equal, point of attachment to hypocotyle close to periphery, opposing faces concave, not interlocking.

Seed of SFN 32829 more or less hemispherical, c. 1-5 × 2-5 cm., cotyledons nearly equal, inner faces nearly plane, not interlocking, cotyledons sessile, point of attachment c. 3 mm. from periphery. In a large 2-seeded fruit the testa was found to be very thick, adhering closely to the cotyledons, the inner faces of the cotyledons plane.

59. Eugenia Hemsleyana King, Mat. F.M.P., No. 12, 88 (1901); Ridl., F.M.P., I, 732, "Syzygium urecolatum" (Korth.) Merr. & Perry in Mem. Amer. Acad. Arts & Sci. XVIII, 3, 174 (1939). (Fig. 27a).

Perak: Gopeng, 500-800 feet, Kunstler 6114 (syntype), near Ulu Kerling, 400-600 feet, Kunstler 8697 (syntype); Relau Tujor, Wray 1803 (syntype); Temengoh, Ridley 14691.

Pahang: Kuala Teku, Seiund 446; Teku, SFN 8088 (Haniff & Nur); Sungai Teku, 500 feet, SFN 31711 (Kiah); Sungai Tahan, Ridley 2634, SFN 20086 (Holttum); track to Gunong Tahan, Corner s.n.; Ulu Sekin, Rompin, Forest Dept. FMS 3202.

A tree, bark pinkish grey, slightly flaky, more or less entire; inner bark red brown, astringent. Twigs terete, more or less compressed below nodes, bark smooth, yellowish grey to pale brown. Leaves large, stiffly coriaceous, elliptic to oblong elliptic, apex shortly acuminate, base cuneate, from c. 13 cm. × 6-5 cm. to 32 cm. × 14 cm., upper surface drying almost black, somewhat polished, smooth, lower surface dull dark reddish brown; midrib narrowly impressed above, prominent and rounded below; primary nerves up to c. 25 pairs, 1-2 cm. apart, impressed above, prominent below, arising almost horizontally from midrib and curving upwards, the upper ones usually strongly curved upwards, meeting a prominent looped intramarginal nerve c. 4-7 mm. from leaf margin, with another faint series of loops close to the recurved margin; secondaries and reticulations very faint or invisible above; the secondaries below prominent, but less so than primaries, the lax reticulations fine and rather faint; petiole stout, c. 1-1-5 cm. long, channelled above.

Panicles terminal and axillary, sometimes clustered, usually peduncled, reaching c. 12 cm., with 2 or 3 distant pairs of spreading or ascending branchlets, the lower ones
up to c. 4 cm. long, the upper short, rachis and branchlets compressed, with dark striate bark; flowers crowded at branchlet ends in heads, sessile; calyx after anthesis widely campanulate, c. 6 mm. long; tapered to base and constricted into a distinct very short pseudostalk c. 1 mm. long; lobes 4, unequal, deciduous, the two outer very thick, very broad and rounded, c. 3 mm. across and 1-5 mm. tall, the inner two somewhat thinner, c. 5 mm. across and 3 mm. tall; petals free, suborbicular, rather thick textured, 4-5 mm. diam.; stamens numerous, filaments slender, flattened at base, up to 6-7 mm. long, anthers oblong or elliptic, c. 0-6 mm. long, connective gland rather conspicuous; style stout, c. 8 mm. long; ovary 2-celled, multiovulate.

Fruit (unripe) globular, vertically ridged or nearly smooth, apical calyx rim prominent, but without calyx lobes; pericarp probably leathery and rather thin; seed 1.

The material of *E. Hemsleyana* is not particularly good, and good flowering material and ripe fruit have yet to be collected. It differs from *E. Dyeriana* in the larger and broader more elliptic leaves with different venation—in *E. Dyeriana* the primary nerves below are black, rather broad, ascending and nearly straight, in *E. Hemsleyana* they are prominent but not broad, almost horizontal at first then curving boldly upwards, the reticulations usually more evident. The flowers of *E. Hemsleyana* are smaller and the calyx more narrowed at base into a more evident pseudostalk.

Merrill and Perry, loc. cit., state that SFN 8088 appears to be a good match for Bornean material of *Syzygium urceolatum* (Korth.) Merr. and Perry. They state also that *S. urceolatum* closely resembles *E. Hemsleyana*. It is possible that the two are conspecific, but I have not seen material of *S. urceolatum*. If they are, King's name will stand, as Korthals' is preoccupied in *Eugenia* and there is apparently no other available.

60. *Eugenia pergamentacea* King, Mat. F.M.P., No. 12, 87 (1901); Ridl., F.M.P., I, 732. (Fig. 27b).

Kedah: Gunong Lang near Baling, SFN 35056 (Kiah), Kiah s.n.; Bongsu Forest Reserve, Forest Dept. FMS 33041.

Penang: Government Hill, Curtis 1440 (lectotype collection); Muka Head, Curtis 1440, Ridley 10781; Waterfall, Curtis 1440; Pulau Betong, Curtis 1440; West Hill, Curtis s.n.; Hindu Temple, Hamif 1034; sine loc., Caultley 2689, 2692.

Perak: Ulu Temengoh, Ridley 14628.

Selangor: Weld Hill Forest Reserve, Forest Dept. FMS 579. Distrib: Endemic.

Curtis 1440 is the type number, but this was cited by King with no other indication of locality than Penang.
Curtis frequently gave the same number to specimens from different localities which he thought belonged to the same species. In this case I have selected the Government Hill collection as the lectotype.

A small *tree*. *Twigs* terete, rather stout, bark pale brown, smooth or somewhat flaky, the very youngest shoots

Fig. 27. *a*, *E. Hemsleyana*; *b*, *E. pergamentacea*.

Vol. XII. (1949).
with blackish brown smooth bark. *Leaves* chartaceous-coriaceous, large, narrowly elliptic oblong to oblong, up to c. 46 cm. long and 15 cm. broad, apex shortly and abruptly acuminate, base cuneate or narrowed and rounded, occasionally subcordate; upper surface drying leaden brown to blackish brown, somewhat polished, lower surface brown to dark reddish brown, dull; midrib impressed above, very prominent and rounded below; *primary nerves* c. 24–42 pairs, depressed and distinct above, very prominent below, very regular, c. 1 cm. apart, slightly ascending, running straight or curving slightly up to a prominent, nearly straight or shallowly looped intramarginal nerve 4–6 mm. from leaf margin with a much fainter loop close to margin; secondaries few, almost as prominent as primaries, reticulations transverse, close and parallel, raised and fine on both surfaces and distinct; petiole stout, up to 2 cm. long, channelled above.

Panicles terminal or axillary, solitary or two or three together, up to c. 15 cm. long, usually peduncled, branchlets up to c. 4 pairs, distant, spreading or ascending, the lower ones as much as 6 cm. long but usually shorter, the upper ones shorter, they and rachis rather stout or slender, more or less compressed, with dark bark; *flowers* in twos or threes at branchlet ends, buds pale green, depressed globular, c. 8–9 mm. long and 1 cm. across; *calyx* after anthesis shortly and widely campanulate, suddenly contracted into a rather stout pseudostalk c. 3 mm. long; lobes 4, subpersistent, unequal, glandular, inflexed and overlapping in bud, the outer two thick, broadly oblong, c. 4 mm. across and 4 mm. tall, the inner c. 6 mm. across and 4–5 mm. tall, with thin margins; *petals* 4, ovate orbicular, with large gland dots, c. 5 mm. diam.; *stamens* very numerous, up to 6–7 mm. long, anthers oblong, c. 0·6 mm. long, connective gland large and conspicuous; *style* stouter than filaments, c. 4 mm. long; *ovary* 2-celled.

Fruit more or less globose, c. 2·5 cm. diam., faintly vertically ridged, calyx rim rather conspicuous, 2–3 mm. high; pericarp about 2 mm. thick; seed apparently naked, cotyledons nearly equal, inner faces plane or concave, point of attachment nearly central.

A striking species with its large oblong leaves with close parallel reticulation below, unfortunately still rather poorly represented by existing collections. It is allied to *E. Hemsleyana* but the leaves are narrower and more oblong, the primary nerves below more prominent, straighter and ascending, the reticulation closer and more evident, the flowers are much larger and the fruit is probably also larger.

Gardens Bulletin, S.
61. Eugenia Gageana King, Mat. F.M.P., No. 12, 116 (1901); Ridl., F.M.P., I, 729. (Fig. 28a).

Perak: Larut, Kunstler 7563 (type collection).

Distrib: Endemic.

A tree up to c. 15 metres tall. Twigs rather stout, terete, compressed at nodes, with smooth brown bark. Leaves thickly coriaceous, oblong lanceolate, apex acuminate, base cuneate, c. 15 cm. × 5.5 cm., both surfaces drying dull brown, the upper smooth, punctate, the lower wrinkled, without visible glands; midrib narrowly impressed above, prominent below; primary nerves up to c. 20 pairs, almost invisible above, elevate, slender and distinct below, c. 0.5 cm. apart, curving up to a distinct looped intramarginal nerve 2–3 mm. from leaf margin, secondaries and reticulations invisible above, well marked and almost as prominent as primaries below; petiole stout, less than 5 mm. long, channelled above.

Panicles terminal, sessile, with several spreading-ascending branches 4–5 cm. long from the base, rather stout, obtusely 4-angled, bark dark; flowers "waxy white tinged with red", sessile, rather crowded, in threes at ends of short branchlets; buds obovoid, 7–8 mm. long; calyx in bud 7–8 mm. long, narrowly obovoid, narrowed rather abruptly into a pseudostalk c. 2 mm. long; lobes 4, subequal, shallow and broad, acute or subacute, c. 2 mm. across and 1 mm. tall; petals calyptrate, but the outer one free, rather thick textured, orbicular, c. 3 mm. diam.; stamens numerous, anthers small with a rather conspicuous connective gland; ovary 2-celled. Fruit unknown.

Very little material of this species is available, and that only in bud. It is not at all like *E. densiflora* as Ridley suggests.

62. Eugenia Prainiana King, Mat. F.M.P., No. 12, 116 (1901); Ridl., F.M.P., I, 750. (Fig. 28b).

Perak: Blanda Mabok, Wray 3990 (syntype); Larut, within 100 feet, Kunstler 5309, 6584 (syntypes).

Distrib: Endemic.

A large tree reaching 48 metres tall and 60–90 cm. diam. (fide Kunstler). Twigs rather stout, terete, bark smooth, brown. Leaves coriaceous, elliptic oblong, apex acuminate, base cuneate, up to c. 12.5 cm. × 5 cm., upper surface drying dark brown to nearly black, polished, lower surface paler, dull; midrib impressed above, elevate and keeled below; primary nerves about 25 pairs, very slender and slightly raised on both surfaces, indistinct, ascending slightly to a nearly straight and very fine intramarginal

Vol. XII. (1949).
nerve c. 1–2 mm. from leaf margin, secondaries and reticulations slightly raised on both surfaces, hardly distinguishable from primaries; petiole slender, up to about 1.5 cm. long.

Panicles terminal or occasionally from upper leaf axils, up to c. 6 cm. long, the axillary ones shorter, condensed, corymbose, on short stout peduncles, or almost sessile, branchlets short, stout, crowded, 4-angled or compressed, with dark bark; flowers white, sessile, in threes at branchlet ends, buds clavate, c. 9–10 mm. long; calyx in bud funnel shaped, 8–9 mm. long, tapering gradually to base, pseudostalk c. 4 mm. long but not well defined; lobes 5, nearly equal, persistent, broadly ovate triangular rounded, fleshy with thin cartilaginous tips, c. 2 mm. across and 1.5 mm. tall; petals falling as a calyptra, but the outer one free, orbicular, thin, c. 4 mm. diam., with sparse but conspicuous gland dots, the others agglutinated into a thick calyptra; stamens numerous, filaments subulate, anthers broadly elliptic, connective gland small but distinct; ovary 2-celled.

Fruit (probably unripe) oblong ovoid to globular, c. 2.5 cm. long and 2 cm. diam., apex with conspicuous long calyx tube 5–6 mm. long and 5 mm. diam., fringed with the remains of the calyx lobes; pericarp rather thin and leathery; seed 1, cotyledons very unequal, one about \(\frac{1}{4} \) the size of the other, inner faces more or less concave, attached to hypocotyle by short stalks.

63. **Eugenia Pearsoniana** King, Mat. F.M.P., No. 12, 116 (1901). *E. Prainiana* King var. **Pearsoniana** (King) Ridl., F.M.P., I, 751 (1922). (Fig. 28c).

Perak: Larut, 800–1,000 feet, Kunstler 3526 (type collection).
Johore: Gunong Panti, 1,500 feet in ridge forest, SFN 32219 (Corner).

Distrib: Endemic.

A tree 15–30 metres tall; bark pinkish fawn, more or less entire; inner bark pale brownish-drab; wood dingy brownish-yellowish. **Twigs** terete, slender, bark smooth or slightly flaky, whitish or pale brown. **Leaves** coriaceous, ovate or elliptic or oblong elliptic, apex caudate acuminate, base cuneate, or rounded and abruptly narrowed on to petiole, up to c. 10 cm. \(\times \) 5 cm.; upper surface shining, drying olivaceous brown, minutely punctate or pubescent, lower surface dull, reddish brown, minutely pubescent; midrib impressed above, elevate below and rather sharply keeled; **primary nerves** up to c. 30 pairs, close together, slightly ascending and curving up to a very faint intramarginal nerve very close to leaf margin, slightly raised above and faint, slightly raised below and very fine and

Gardens Bulletin, S.
Fig. 28. a, *E. Gageana*; b, *E. Prainiana*; c, *E. Pearsoniana*; d, *E. oblata*; e, *E. laxicaulis*; f, *E. inophylla*.

Vol. XII. (1949).
inconspicuous; secondaries very faint, reticulations almost or quite invisible; petiole slender, 6–10 mm. long.

Panicles terminal, short, condensed, 2–4 cm. long, sessile or on very short stout peduncles, branchlets crowded, short, thick, angled and compressed; flowers cream white, the top of calyx tube often pinkish, sessile in twos or threes at branchlet ends, buds clavate, c. 8 mm. long; calyx after anthesis funnel shaped, c. 6 mm. long, tapering to a short stout not well defined pseudostalk c. 2 mm. long; mouth with 4 very shallow oblong lobes, appearing truncate; petals calyptrate, but the outer one free, rather thick textured, orbicular, c. 4 mm. diam., the others agglutinated; stamens numerous, up to c. 11 mm. long, filaments slender, subulate, somewhat flattened below, anthers broadly oblong or oblong elliptic, c. 0.6 mm. long, connective gland small; style slender, only a little stouter than filaments, flattened and ridged, c. 7 mm. long; ovary 2-celled, multiovulate. Fruit unknown.

Ridley reduces this species to a variety of E. Prainiana, but although little material of either species is known, I believe them to be distinct, although closely allied. E. Pearsoniana differs from E. Prainiana in the thinner and paler twigs, the leaves more abruptly acuminate; the stouter and more condensed inflorescence; the calyx mouth obscurely and shallowly lobed, not with definite lobes with thin tips. Fruit of E. Pearsoniana when found may add other distinguishing characters.

Widely distributed but not very frequent from Setul and Kelantau to Johore, mostly on tidal rivers and near the sea. Distrib: Burma, Siam, Indo-China, Borneo.

A riverside bush or a tree up to c. 15 metres tall; bark smooth or becoming slightly scaly flaky, light greyish green or brown or pale greyish buff. Twigs rather slender, terete, more or less compressed below nodes, bark drying brown,
smooth or flaky. *Leaves* coriaceous, broadly lanceolate to oblong elliptic, apex acuminate, base cuneate or rounded and rather abruptly narrowed to petiole, from c. 7·5 cm. × 3 cm. to 16·5 cm. × 6·5 cm.; upper surface drying olivaceous brown to blackish brown, closely and minutely punctate or sometimes pubescent, lower surface brown or reddish brown, glandular punctate or black gland dotted; midrib impressed above, elevate below; primary nerves up to c. 25 pairs, usually c. 5 mm. or less apart, raised and slender on both surfaces, usually rather indistinct above and distinct below, slightly ascending and curving up to a shallowly looped or nearly straight intramarginal nerve close to leaf margin; secondaries and reticulations below numerous and close, almost as distinct as primaries; petiole up to c. 1 cm. long.

Panicles terminal and axillary, sometimes clustered, sessile or more usually pedunculate, shorter than leaves, more or less corymbose, reaching c. 7 cm. long, the primary branchlets few, slender, angled, ascending, the secondary branchlets short and rather crowded; *flowers* white or pale cream, calyx tube often slightly pinkish, sessile in threes or clustered at branchlet ends, buds clavate, reaching c. 1 cm. long; calyx funnel shaped, 6–8 mm. long, tapered to a rather slender pseudostalk 2–3·5 mm. long; lobes 5 (?or 4), subpersistent, subequal, short broad and rounded, c. 2·5 mm. wide and 1 mm. tall; *petals* calyptrate, calyptra thin, all the petals agglutinated or the outer one or two free, thin, gland dotted, orbicular, c. 5 mm. diam.; *stamens* numerous, filaments slender, subulate, up to c. 1·7 cm. long, anthers oblong elliptic 0·8–1 mm. long, connective gland small; *style* subulate, stouter than filaments, and about as long as them; ovary 2-celled.

Fruit more or less wholly suffused dull purple, depressed globose or oblong globose, slightly compressed laterally, c. 1·75 cm. long and 2 cm. broad, faintly vertically ridged, apical umbilicus rather deep, c. 4 mm., diam., calyx rim rather prominent, 1–1·5 mm. tall, bearing the somewhat enlarged but not conspicuous upright or incurved calyx lobes; pericarp c. 2 mm. thick; testa very thick, c. 0·5 mm., hard, crustaceous, adhering closely to the pale smooth surface of cotyledons; cotyledons nearly equal, opposing faces nearly plane, one cotyledon almost sessile on the hypocotyle, the other with a short broad stalk.

Syntypes of *E. laxiuscula* Ridl. and *E. limnoea* Ridl. are in Herb. Singapore. I can detect no significant points of difference between them and typical *E. oblata* Roxb. *E. oblata*, in common with most widely distributed species, shows considerable variation in size and shape of leaf and of inflorescence and there is some variation in size of flower.
Ridley includes under his E. limnoea, E. oblongifolia Duthie var. robusta King. This variety certainly has nothing to do with E. oblongifolia but neither can it be placed with E. limnoea. It differs in the truncate calyx mouth, the paler smoother twigs, different leaf texture and venation. I believe it to be E. inophylla Roxb.

In his remarks on E. limnoea in Journ. Roy. As. Soc. Str. Br., LXXIX, p. 64, Ridley says that King identified this as E. densiflora Duthie and that E. limnoea is allied to this species. I have seen no specimens of E. limnoea previously written up by King (except Scortechini 216, which is E. oblongifolia var. robusta), nor does King quote any of the numbers cited by Ridley. There is not, to my eye, even a superficial resemblance to E. densiflora.

In the original description of E. laxiuscula and also in Fl. Mal. Pen., Ridley cites Curtis 975 as the type of his species. This is an error for Curtis 973 (identified by King as E. inophylla). Curtis 975 is E. Bernardi King.

65. Eugenia laevicalulis Duthie in Hook. fil., F.B.I., II, 492 (1878); King, Mat. F.M.P., No. 12, 116; Ridl., F.M.P., I, 749, sub E. oblata Roxb. (Fig. 28e).

Kedah: Jerai Forest Reserve, Forest Dept. FMS 17917.

Penang: sine loc., Wallich 3600D, Curtis 2246, 2247; Moniot's road, 1,200 feet, Curtis 666; Coolie Lines, Government Hill, 1,200 feet, Curtis 666; Government Hill, 2,300 feet, Curtis 750; Muka Head, 800 feet, Curtis 750; top of Penang Hill, Ridley s.n.; Penang Hill, 2,300 feet, SFN 21438 (Henderson), SFN 21468, 21496 (Ewart).

Malacca: sine loc., Maingay K.D. 753 (type collection).

Johore: Panti river, Kota Tinggi, Ridley 15448 (this specimen differs from the typical form in having considerably larger and broader leaves, up to 15 cm. long and 7 cm. broad, and the inflorescences longer and less condensed with more slender branches).

Distrib: Endemic.

A massive but not tall tree; bark fissured. Twigs slender, terete, pale yellowish or pale brown, bark smooth and more or less polished, sometimes flaky. Leaves coriaceous, oblong lanceolate or oblong elliptic, sometimes ovate oblong, rather abruptly acuminate or caudate acuminate with a very narrow acumen, base cuneate, 6.5–10 cm. long, 2.5–4.5 cm. broad, upper surface drying olivaceous brown to almost black, more or less polished, minutely punctate or glandular pubescent, lower surface reddish brown to chocolate brown, obscurely pubescent; midrib shallowly depressed above, elevate below, more or less keeled; primary nerves about 25 pairs, close together (2–3 mm. apart), slightly raised on both surfaces and very faint, especially

Gardens Bulletin, S.
above, meeting in an almost straight intramarginal nerve c. 1 mm. from leaf margin; secondaries and reticulations very faint; petiole up to c. 1 cm. long.

Panicles terminal or occasionally from upper axils, short and condensed, up to c. 3 cm. long, rachis stout, branchlets short and crowded, stout, 4-angled with dark wrinkled bark; flowers with pale green calyx and greenish white petals, usually in threes at branchlet ends, all sessile or occasionally the centre one on a very short stout pedicel; buds clavate or cylindrical clavate 8-9 mm. long; calyx after anthesis funnel shaped or slightly campanulate, tapering evenly to base, without a well defined pseudostalk; lobes 5, triangular, subacute or blunt, c. 2 mm. across and 1.5 mm. tall, spreading or reflexed after flowering, persistent; petals agglutinated into a thick orbicular calyptra c. 5 mm. diam; stamens numerous, filaments slender, subulate, up to 9-10 mm. long, anthers oblong elliptic, 0.6-0.7 mm. long, connective gland small; style stouter than filaments, c. 5 mm. long; ovary 2-celled.

Fruit globose or transversely oblong globose, brown when dry, pustulate, faintly vertically ridged, c. 1.5 cm. diam., apical calyx tube prominent, c. 2 mm. tall and 5 mm. across, fringed by the spreading hardly enlarged calyx lobes; pericarp rather thin, testa rather thick, pithy crustaceous; seed 1, cotyledons nearly equal, side by side, outer surfaces finely gland pitted, inner faces somewhat concave, gland dotted, sessile on the hypocotyle or nearly so, plumule large.

Distinct from E. oblata Roxb., to which it is reduced by Ridley, in the pale bark of the twigs, the smaller leaves with fainter venation, shorter, much contracted inflorescences with stouter branchlets, calyx less narrowed at base, with smaller subacute triangular lobes, and shorter stamens.

Penang: Penara Bukit, c. 1,000 feet, Curtis 794.
Selangor: 20th mile, Ginting Simpah, Forest Dept. FMS 12860; 23rd mile. Ginting Simpah, Forest Dept FMS 13383.

Distrib: Endemic.

A tree 12-15 m. tall. Twigs rather stout, terete, bark reddish brown nearly smooth. Leaves chartaceous, drying greenish brown to dull grey brown above, dull grey brown below, oblong to elliptic oblong, base cuneate, apex rather abruptly acuminate, up to c. 13 cm. × 5 cm., petiole slender, c. 5-7 mm. long; midrib sunk above, prominent below; primary nerves fine, not more prominent than secondaries

Vol. XII. (1949).
and hardly distinguishable from them, about 25-40 pairs, raised above and below, meeting in an inconspicuous intramarginal nerve c. 2-4 mm. from leaf margin.

Panicles terminal, densely flowered, often much contracted, usually less than 8 cm. long, primary branches stout with reddish brown bark, ultimate branchlets finer, more or less 4-angled, with dark striate bark; flowers in threes at ends of branchlets, the centre one sessile, the outer ones on pedicels c. 0.8 mm. long; calyx narrowly funnel-shaped in bud, c. 4-6 mm. long including lobes, gradually narrowed to a slender pseudostalk; lobes 4, conspicuous, broad, persistent after anthesis, c. 1.5 mm. tall and 2-5 mm. wide, rather thick textured with membranous margins; petals 4, free, membranous, persistent for some time after anthesis; stamens 9-12 mm. long, style about as long; ovary 2-locular with many ovules.

Fruit globose or slightly depressed globose, c. 1.5 cm. diam. (?unripe), crowned by calyx limb and persistent sepals; seed 1, globose, cotyledons more or less equal, attached to hypocotyle near centre of opposing faces.

This species is distinguished from E. oblata, to which it appears nearest, by the smaller flowers, more deeply lobed calyx, denser inflorescence, and the thinner leaves with finer and closer venation, with the intramarginal nerve further from margin.

Perak: Gopeng, 500-800 feet, open jungle in hilly locality, Kunstler 5594.

Known only from the above collection.

A tree 12-15 m. tall, stem 20-23 cm. diam., twigs smooth, terete, bark dull brown; leaves lanceolate or narrowly elliptic lanceolate, or somewhat ovate-lanceolate, up to c. 13 cm. x 4 cm., apex long acuminate, often folded or bent sideways when dry, base long narrowed and somewhat decurrent on petiole; upper surface drying blackish brown, lower surface dull reddish brown; midrib sunk above, raised below; primary nerves about 20 pairs, very faint above, slightly raised below, very slender and inconspicuous, meeting in a very fine intramarginal nerve 1-2 mm. from the recurved leaf margin; secondaries and reticulations a little less conspicuous than primaries below; petiole up to c. 1 cm. long, slender.

Inflorescence a spreading panicle, or several together, terminal or from upper one or two axils, on a peduncle up to c. 4 cm. long but usually not exceeding c. 1 cm., peduncle and inflorescence branches rather slender, strongly angled,

Gardens Bulletin, S.
with striate bark, the whole inflorescence up to c. 9.5 cm. long and 6 cm. across; flowers densely crowded at ends of branchlets, c. 1 cm. long, sessile; calyx in bud funnel shaped, c. 6 mm. long and 3 mm. across mouth, tapering gradually from apex to base, the pseudostalk c. 2–3 mm. long but not sharply marked off, calyx mouth with five broad shallow inconspicuous blunt or subacute subpersistent lobes c. 1.25 mm. wide and 0.5 mm. tall, but variable in size; petals probably falling as a calyptra but easily separable, more or less orbicular, c. 3 mm. diam.; stamens numerous, filaments slender, up to c. 8 mm. long, anthers triangular ovate, c. 0.5 mm. long, connective gland inconspicuous; style considerably stouter than filaments, c. 6 mm. long. Fruit unknown.

A species probably allied to *E. inophylla* and to *E. oblata* but differing from the former in the larger calyx lobes, and the narrower leaves with fewer veins, and from the latter by the smaller and narrower flowers and the much narrower leaves with less prominent venation.

68. **Eugenia inophylla** (DC.) Roxb., Fl. Ind., II, 496 (1832); Duthie in Hook. fil., F.B.I., II, 480; King, Mat. F.M.P., No. 12, 114; Ridl., F.M.P., I, 750. *E. oblongifolia* Duthie var. *robusta* King, loc. cit., 112. *Syzygium inophyllum* DC., Prodr., III, 260 (1828); Merr. & Perry in Mem. Amer. Acad. Arts & Sci., XVIII, 3, 188. (Fig. 28f).

In lowland forest from Penang and Kelantan to Singapore, commonest in the north of the Peninsula.

Distrib: Burma, Borneo, Moluccas (fide Merrill & Perry).

A tree reaching c. 24 metres tall. Twigs rather slender, terete or obscurely quadrangular, bark brown, smooth. Leaves coriaceous, narrowly elliptic or elliptic oblong or elliptic lanceolate, apex acuminate, usually rather abruptly so, base cuneate, up to c. 14 cm. × 5 cm.; upper surface drying nearly black, obscurely punctate or pustulate, somewhat polished, lower surface dark brown or reddish brown; midrib impressed above, elevate below; primary nerves very numerous and close together, slightly elevate on both surfaces and faint, ascending and curving up to a faint intramarginal nerve c. 1 mm. from leaf margin; reticulations close and elongate, raised and faint on both surfaces; petiole up to c. 1 cm. long.

Panicles terminal or from upper axils, rather dense, corymbose, peduncled, up to c. 12 cm. long with numerous rather slender angled and compressed branchlets; flowers cream or white, crowded at branchlet ends, sessile; buds clavate, c. 7–8 mm. long; calyx funnel shaped after anthesis, c. 6 mm. long, tapering gradually to a slender pseudostalk

Vol. XII. (1949).
2–3 mm. long, mouth with five very shallow broad obscure lobes less than 1 mm. tall; petals calyptrate, the calytra thin and usually the outer petal partially free; stamens numerous, filaments slender, subulate, up to c. 7–8 mm. long, anthers ovate triangular, 0.6–0.8 mm. long, connective gland small and acute but distinct; style rather slender but stouter than filaments, subulate, c. 7 mm. long; ovary 2-celled.

According to Roxburgh the fruit is large and pear-shaped. No ripe fruit on Malayan material has been seen.

This species differs from E. oblata Roxb. in the generally smaller flowers, with the calyx mouth almost truncate or very obscurely lobed or wavy, not with shallow broad persistent lobes; in the smoother darker twigs, not reddish and more or less flaky; in the nerves being less prominent above, rather closer, much less prominent below, reticulations on the upper surface more evident and finer, less evident below. Ridley says that the nervation of E. inophylla is as in E. oblata, but there is a distinct difference.

I include here with some doubt Scortechini 216 which is the type of King's variety robusta of E. oblongifolia Duthie. Ridley places it under E. oblata Roxb., but it does not belong there (see note under that species). The two sheets of this number in Herb. Singapore have much paler twigs than other specimens of E. inophylla, the leaves have longer petioles and are pustulate on both surfaces. The inflorescence and flowers are those of typical E. inophylla.

69. Eugenia Bernardi King, Mat. F.M.P., No. 12, 115 (1901). E. inophylla Roxb., var. Bernardi (King) Ridl., F.M.P., I, 750 (1922). E. simulans King, loc. cit., 129, pro parte. (Fig. 29a).

Penang: Government Hill, 2,000 feet, Curtis 2845 (syntype); sine loc., Curtis 975 (syntype).
Perak: sine loc., Scortechini 326 (syntype).
Selangor: 15th mile, Pahang track, Ridley 8617 (syntype); Weld Hill Forest Reserve, Forest Dept. FMS 1223, 17465.
Pahang: Cameron Highlands, Forest Dept. FMS 20806; Sungai Terolak, Ulu Telom, Forest Dept. FMS 27553; Kuala Sungai Kial, Telom, SFN 23908 (Kiah); Rotan Tunggal Forest Reserve, Forest Dept. FMS 29353; Sungai Tahan, SFN 20074 (Holttum).

A medium sized to tall tree. Twigs slender, terete, or the youngest ones slightly compressed, dark brown, the older ones with pale grey somewhat polished bark. Leaves thinly coriaceous, elliptic or elliptic oblong, apex abruptly

Gardens Bulletin, S.
Fig. 29. a, *E. Bernardi*; b, *E. filiformis*; c, d, *E. caudata*; e, f, *E. oleina*.

and usually shortly acuminate, base cuneate and narrowed on to petiole or more or less rounded and abruptly and shortly narrowed to petiole, from c. 7 cm. \(\times \) 3.5 cm. to 18 cm. \(\times \) 8 cm.; upper surface when dry from greenish brown to almost black, more or less shining, closely pubescent or rugulose-pustulate, lower surface paler, greenish to dark brown, pustulate as upper surface; midrib impressed above, prominent below and pubescent; primary nerves numerous and close together, raised on both surfaces and very fine, ascending slightly to a fine intramarginal nerve close to the leaf margin; the close rather elongate reticulations raised on both surfaces and almost as distinct as primaries; petiole rather slender, up to c. 1.3 cm. long.

Panicles terminal and axillary, up to c. 10 cm. long, on peduncles of varying length, they and the rachis terete or obscurely quadrangular, with dark striate bark; lowermost branchlets when present ascending, the upper two or three pairs nearly horizontal, 4-angled; bracts and bracteoles subpersistent, small, broadly ovate rounded or ovate triangular subacute; flowers sessile in threes or clusters at ends of very short ultimate branchlets; buds obovoid, c. 6 mm. long; calyx in bud cylindric campanulate, c. 4-5 mm. long, gradually narrowed to base without a well defined pseudostalk, after anthesis widely campanulate, or funnel shaped, often rather abruptly contracted at base into a definite short pseudostalk c. 1.5 mm. long, mouth almost truncate or with 5 very short broad obscure lobes; petals falling in a calyptra but the outer petal free, thin, orbicular, c. 2.5 mm. diam., the others agglutinated; stamens numerous, filaments subulate above, more or less flattened at base, up to c. 7 mm. long, anthers oblong ovate c. 0.6 mm. long, connective gland small and inconspicuous; style somewhat stouter than filaments, c. 6 mm. long; ovary 2-celled.

Fruit (?unripe) globose or depressed globose, c. 2.5 cm. diam., faintly vertically ridged, apical umbilicus c. 3 mm. diam., fringed by the very short calyx rim; pericarp rather thin, testa rather thick, more or less crustaceous, seed 1, c. 1.5 cm. diam., cotyledons slightly unequal, side by side, inner faces nearly plane, gland dotted, attached at their centres to the hypocotyle by very short broad stalks.

Ridley reduces this species to a variety of **E. inophylla** Roxb., but I believe it to be sufficiently distinct in the thinner leaves, with the upper surface finely wrinkled or pubescent, the longer and more slender petioles, the shorter and more cupshaped flowers with either a very short stout pseudostalk or none.

Johore: Sungai Pontian Besar, common on the riverbank in the *Terminalia-Pandanus* zone, SFN 36754 (Henderson), SFN 36956 (Corner & Henderson).

Known so far only from this locality.

A shrub or small bushy tree. Branchlets terete, bark smooth, grey brown to reddish. Leaves thinly coriaceous, oblong elliptic to ovate, up to c. 13 cm. long and 5 cm. broad, apex long acuminate, acumen 1–2 cm. long, base cuneate and narrowed on to petiole, upper surface drying greenish to reddish brown, minutely gland dotted, lower surface greenish to brownish, paler than upper, minutely gland dotted; midrib shallowly impressed above, elevate below; primary nerves up to c. 15 pairs, slender and not conspicuous above, pale and very slightly raised, slightly raised and slender below; secondaries and reticulations usually obscure above, visible below and almost as conspicuous as primaries; intramarginal nerve slender and inconspicuous, 1–2 mm. from leaf margin; petiole c. 0.5 cm. long.

Inflorescences terminal or from upper axils, paniculate, up to c. 9 cm. long, nearly sessile or on peduncles up to c. 3 cm. long, primary branchlets up to c. 2 cm. long; flowers sessile, clustered either at the ends of the primary branchlets or of shorter secondary branchlets; buds c. 1 cm. long; calyx c. 7–8 mm. c. 5 mm. across mouth, narrowed at base into a rather stout pseudostalk 2–3 mm. long, lobes broad, shallow, inconspicuous, c. 0.75 mm. tall and 2.5 mm. wide, pellucidly gland dotted; petals calyptrate, pellucidly gland dotted; stamens very numerous, 15–16 mm. long, anthers ovate oblong, 0.5–0.75 mm. long, connective gland inconspicuous; style 12–13 mm. long; ovary 2-celled with several ovules in each cell. Fruit unknown.

Another species allied to *E. inophylla*, but differing in the paler bark of the twigs, the much longer stamens, and in being a bush or small bushy tree of tidal rivers.

71. *Eugenia filiformis* Duthie in Hook. fil., F.B.I., II, 478 (1878); King, Mat. F.M.P., No. 12, 105, pro parte; Ridl., F.M.P., I, 740; Corner, Wayside Trees of Malaya, p. 497, fig. 168. *E. clavimyrtus* var. minor Koorders & Valetton in Meded. Lands Plantent., XL, 112 (1900). *Syzygium filiforme* Wall. Cat. 3580. (Fig. 29b).

Common in lowland forest from Perak to Singapore. **Distrib**: Java.

A small or medium sized tree with dense crown and drooping branches, without buttresses; bark smooth or very finely creviced in places, warm red brown; inner layers

Vol. XII. (1949).
thin, paler brown, wood very pale buff, darkening on exposure. **Twigs** very slender, terete, bark smooth, greyish or brownish. **Leaves** coriaceous, variable in size and shape from lanceolate or ovate lanceolate to oblong elliptic, apex acuminate or caudate acuminate, base cuneate, or rounded and abruptly narrowed to and often decurrent upon petiole, from c. 5 cm. × 1-75 cm. to 11 cm. × 5 cm.; both surfaces drying more or less greenish brown, closely and minutely pustulate or black gland dotted, the glands on the lower surface often obscure; midrib impressed above, elevate below, often glandular pustulate; **primary nerves** about 8–16 pairs, c. 0-5 cm. apart, usually slightly raised and very slender and inconspicuous on both surfaces, sometimes almost invisible above, occasionally rather distinct below, curving up slightly to a fine intramarginal nerve c. 2 mm. from leaf margin; secondaries and reticulations usually obscure, especially above, often invisible; petiole slender, up to c. 7 mm. long.

Racemes terminal and axillary, very lax and few flowered, up to c. 10 cm. long, flowers sometimes solitary axillary or extra axillary; peduncles slender, very variable in length, rachis slender, bearing distant pairs of flowers or solitary flowers, usually with two or three clustered at its apex; pedicels filiform, very variable in length, reaching 4-5 cm. long, usually exceeding 1-3 cm.; **flowers** white, **calyx** funnel shaped, 5–6 mm. long, tapered or narrowed rather abruptly into a slender pseudostalk 0-5–8 mm. long, of the same thickness as the pedicel; lobes 4, nearly equal, sub-persistent, broad and rounded, thin, gland dotted, c. 2 mm. across and 1-5 mm. tall; **petals** 4, free or calyptrate, or the two outer free and the two inner agglutinated, thin, orbicular, 2-5–3 mm. diam., inconspicuously gland dotted; **stamens** numerous, filaments slender, subulate, up to c. 5 mm. long, anthers oblong elliptic, c. 0-4 mm. long, connective gland small and inconspicuous; **style** much stouter than filaments, c. 10 mm. long; **ovary** 2-celled.

Fruit globose, ovoid globose or more or less depressed globose, sometimes a little angled, up to 1-5 cm. diam., pale whitely green when ripe, apex crowned by the short calyx rim c. 3-5 mm. diam.; pericarp juicy pulpy, up to c. 5 mm. thick, testa adhering loosely to cotyledons, somewhat pithy and rather thick; cotyledons deep reddish purple, inner faces conspicuously gland dotted. Germination hypogean, the shoot with pink winged angles. (It is rare to find in Singapore fruits that are not infected with the larvae of an insect, apparently the same as that found in *E. pseudosubtilis*).

Gardens Bulletin, S.
There is a remarkable and unusual variation in the size of the flower parts in this species, even on the same twig. In *SFN* 1,4924 the calyx tube varies from 4-6 mm. long, the pseudostalk from 2-8 mm. and the pedicel from 18-26 mm. In Alivins 543, the calyx tube varies from 3-6 mm., the pseudostalk from 3-7 mm. and the pedicel from 18-29 mm. The range of variation in twelve sheets is—calyx tube 2.5-6.5 mm., pseudostalk 0.5-8 mm., pedicel 13-45 mm.

The very lax racemes with few flowers and the long filiform pedicels are very distinctive.

Not uncommon in lowland and hill forest from Penang to Singapore.

Distrib. Java.

Leaves much as in *E. filiformis* but sometimes the reticulations raised and distinct on both surfaces. *Flowers* with greenish calyx tube and white petals; *calyx* tube cylindric obconic, slightly ventricose, especially after anthesis, up to c. 20 mm. long, tapered gradually into a slender not sharply defined pseudostalk 1.5-9 mm. long, pedicel filiform 15-60 mm. long; *calyx* limb cyathiform, lobes 4, very unequal, broadly ovate rounded, subpersistent, eventually reflexed, the two outer rather thick, gland dotted, c. 4.5 mm. across and 3 mm. tall, the two inner overlapping in bud, thinner, c. 6-7 mm. across, 5 mm. tall, sparsely but conspicuously gland dotted; *petals* 4, free, or sometimes calyptrate, orbicular, conspicuously pellucidly gland dotted, c. 6-7 mm. diam.; *stamens* numerous, filaments slender, subulate, slightly broadened at base, up to c. 1.2 cm. long (to 2.5 cm. fide Koorders & Valeton), anthers oblong reniform 0.6-0.7 mm. long, connective gland small and inconspicuous; *style* stouter than filaments and as long as them; *ovary* 2-celled, multiovulate.

Fruit oblong globose, c. 1.5 cm. long, crowned by the short calyx rim, umbilicus shallow, c. 5-6 mm. diam., seed 1, cotyledons superposed, sometimes polyembryonic.

This variety differs from the typical form in the longer and narrower calyx tube, gradually tapered into the pseudostalk and in the very unequal calyx lobes. The flowers look so different from those of typical *E. filiformis*
that it could perhaps be held to be a distinct species. However, the foliage and inflorescence of both forms are very similar and both have long filiform pedicles.

Koorders and Valeton's *E. clavimyrtus* was based on *Clavimyrtus glabrata* Bl., Blume's name being preoccupied in Eugenia. They reduce *E. filiformis* to a variety—*minor*—of their species, but the reduction of an older name to a variety of a later is not in accordance with the Rules of Nomenclature. I have examined the type of *Clavimyrtus glabrata* Bl., and although the specimen is fragmentary with old and detached flowers, I believe it to be our plant.

Enumerated below are sterile or fruiting specimens which cannot be assigned definitely either to the typical form or to the variety.

Kedah: Gunong Jerai Forest Reserve, Forest Dept. FMS 11274.

Perak: Bukim Forest Reserve, Forest Dept. FMS 5385; Chikus Forest Reserve, Forest Dept. FMS 27245, 27246; Kota, Wray 3262.

Selangor: Bukit Lagong Forest Reserve, Forest Dept. FMS 14685; Kanching Forest Reserve, Forest Dept. FMS 6365.

Malacca: Merlimau, *Derry* 471, Alvins s.n.; Bukit Bruang, *Derry* 451, 1230; sine loc., Alvins 68.

Pahang: Beserah road, Forest Dept. FMS 3130.

Craib in Fl. Siam. Enum. I, 641 (1931) describes as new a variety *parvifolia* of *E. filiformis*. The duplicate of the type (*Kerr 7376*) in Herb. Singapore is rather poor, having only a few detached flower buds, but although the shape of the leaves suggests *E. filiformis*, the very short pseudostalk would place the specimen with *E. caudata* King rather than with *E. filiformis*.

E. filiformis Macfadyen, Fl. Jamaica, II, 116 is listed in Index Kewensis. According to data given by Pritzel the date of publication would have been 1850 or a little earlier. However, Fawcett and Rendle, Fl. Jamaica, Vol. V, in a note on p. xiv, state that the second volume of Macfadyen's Flora was never published, the printing of it having been stopped owing to the sudden death of Dr. Macfadyen. This note is merely to draw attention to the fact that Macfadyen's name has no nomenclatorial standing, although Index Kewensis lists it as if it had.

72. *Eugenia caudata* King, Mat. F.M.P., No. 12, 105 (1901), pro maxime parte; Ridl., F.M.P., I, 740. *E. filiformis* Duthie var. *parvifolia* Craib, Fl. Siam. Enum., I, 641 (1931). (Fig. 29c, d).

Penang: West Hill, 2,000 feet, *Curtis* 744, 2,400 feet, SFN 2653 (Burkill), 3,000 feet, Nauen s.n.

Perak: sine loc., Scortechini 392 (syntype); Maxwell's Hill, 2,500 feet, Wray 2824, 3208 (syntypes), 4,000 feet, *Curtis* 2007 (syntype), Ridley 2991, 5344; Larut, 1,800-2,500 feet.

Gardens Bulletin, S.
Kunstler 2421 (syntype), 2,000–2,500 feet, Kunstler 6262 (syntype), 4,000–4,600 feet, Kunstler 3654 (syntype); Gunong Hijau, 5,000 feet, Scortechini 444, (syntype), SFN 12768 (Burkill & Haniff); Gunong Batu Puteh, 3,400 feet, Wray 472, 1176 (syntypes); Ulu Batang Padang, Wray 1514 (? syntype, ? quoted by King as 1574); Bubu Forest Reserve, Forest Dept. FMS 29856.

PAHANG: Fraser Hill, Forest Dept. FMS 22497, SFN 33160 (Corner).
Distrib: Endemic.

A shrub or small tree up to about 12 metres tall; bark smooth entire then finely creviced, greyish brownish; inner bark pale greyish brownish drab. Twigs slender or very slender, terete, bark smooth, pale brownish or greyish. Leaves thinly coriaceous, lanceolate or ovate lanceolate or elliptic lanceolate, apex caudate acuminate, base cuneate and narrowed on to petiole, from c. 3 cm. × 1 cm. to 7 cm. × 3 cm., upper surface drying pale brown to blackish brown, slightly polished, smooth, minutely punctate, lower surface pale brown to reddish brown, dull, minutely black dotted or glandular pustulate; midrib narrowly impressed above, slightly elevate and keeled below; primary nerves numerous, spreading-ascending to a very obscure intramarginal nerve, almost or quite invisible on both surfaces; petiole slender, 3–6 mm. long.

Racemes terminal or axillary, up to c. 6 cm. long, very lax and few flowered, sometimes with 1–2 pairs of very slender spreading branches c. 2 cm. long, each bearing two terminal flowers; or almost unbranched with 5 flowers; flowers white, the calyces suffused red, sessile or on slender pedicels up to c. 5 mm. long; calyx campanulate or funnel shaped, c. 5 mm. long, contracted suddenly at base into a slender pseudostalk from 1–3 mm. long; lobes 4, equal, deciduous, broad and rounded or subacute, c. 2 mm. across and 1 mm. tall; petals 4, free or falling as a calyptera but not agglutinated, orbicular, obscurely gland dotted, c. 3 mm. diam.; stamens variable in length, reaching 12 mm., filaments slender, subulate; anthers ovate elliptic, c. 0.5 mm. long, connective gland small but distinct; style much stouter than filaments, and about as long as longest stamens; ovary 2-celled.

Fruit more or less globose, c. 1–1.5 cm. diam., crowned by the short calyx rim c. 6 mm. diam., seeds 1 or 2.

The small caudate acuminate leaves with almost invisible nervation and the few flowered very lax inflorescences distinguish this species.

King includes in his species and takes his specific name from Myrtus caudata Wall. Cat. 3631, nomen nudum. I have seen a sheet of this number in Herb. Calcutta, written

Vol. XII. (1949).
up by King. If it is a Eugenia, which I doubt, it differs from *E. caudata* in the narrower and longer leaves, not black dotted below, with a different texture and venation. The specimen is sterile and is said to have been collected in Singapore, where *E. caudata* has not been found.

See note under *E. filiformis* Duthie.

Penang: Wallich, fide King.
Johore: Kota Tinggi, Ridley s.n.; Sungai Rhu Reba, Jason Bay, Corner s.n.; Sungai Kambau, Sedili Besar, SFN 28081 (Corner); Sungai Pendas, SFN 32254 (Corner).
Singapore: Sungai Morai, Ridley s.n., 3633a; Changi, Ridley 4572; Sungai Jurong, Ridley 4985; Seltar, Ridley 5001; Jurong, Ridley 8424; Kranji, Ridley 11847; Woodlands Reserve, SFN 36959 (Ngadiman), Corner s.n.; Economic Gardens, Ridley 12195; Botanic Gardens, Ahmat s.n., Henderson s.n., sine loc.; Wallich 3571.

Distrib: Burma, Siam, Sumatra, Anamba Islands, Borneo, Philippines.

A small *tree*, trunk sometimes shortly stilt rooted at base; bark light greyish brown or light orange brown, slightly flaky or very slightly papery flaky. Youngest *twigs* sharply 4-angled, bark smooth, dark brown, older twigs terete with brown slightly flaky bark. *Leaves* thickly coriaceous, lanceolate or oblong lanceolate to broadly elliptic ovate, apex acute or acuminate, base cuneate, 3-5-8 cm. long, 1-4 cm. broad; both surfaces drying pale brown to reddish brown, the lower usually paler, both minutely punctate or black dotted; midrib narrowly impressed above, slightly elevated and keeled below; primary nerves numerous, almost invisible, impressed, as are the reticulations, on both surfaces; petiole short, less than 5 mm. long.

Panicles terminal or from upper axils, often clustered at tips of twigs, peduncled, c. 4-5 cm. long, branches lax, spreading, ascending, *petiole* and rachis and peduncle slender, stiff, sharply 4-angled with pale or reddish brown smooth or somewhat pustulate bark; *flowers* white or the calyx green suffused purplish brown, sessile or on very short

Gardens Bulletin, S.
rather stout pedicels, in twos and threes at branchlet ends;
buds broadly clavate, c. 4 mm. long; calyx funnel shaped or
somewhat campanulate, c. 3-5 mm. long, tapered to base and
contracted into a pseudostalk c. 1 mm. long; lobes 4, broad
and rounded, subpersistent, evident in bud, c. 1 mm. across
and 0-5 mm. tall, reflexed after anthesis; petals falling as
a calyptera, gland dotted, often not completely agglutinated
and the outer one at least partially or wholly free, orbicular,
c. 3-5 mm. diam.; stamens numerous, variable in length, up
to c. 5 mm. long, filaments slender, subulate, anthers c.
0-3-0.4 mm. long, connective gland obscure; style much
stouter than filaments, c. 6 mm. long; ovary 2-celled.

Fruit small, broadly obovoid or pyriform, c. 5 mm. long
and 6-7 mm. across, dark red to reddish purple, then black
when ripe; apex deeply and widely excavate, umbilicus c.
3 mm. diam., its rim with remains of 4 enlarged lobes;
pericarp juicy fleshy, up to c. 2 mm. thick; seed 1, more or
less boat shaped, c. 5-6 mm. × 3-4 mm., testa rather tough
and leathery, adhering to cotyledons; cotyledons side by side,
conspicuously gland dotted, one often half as big as the
other; inner faces folded, with the large hypocotyle lying in
the fold, reaching the periphery of the seed and there
conspicuous. Germination epigeal.

According to Roxburgh this species was first found in
Sumatra, whence it was sent to Calcutta and cultivated.
Presumably Roxburgh described his E. myrtifolia from
specimens from these cultivated plants, and I have therefore
taken as typical specimens ticketed as cultivated in Hort.
Bot. Calcutta. The Malayan collections agree well with
those from Calcutta with a few small variations. In the
more recent collections the leaves dry much paler. Ridley
5001 has the reticulations raised on the under surface of
the leaf, and Ridley 11847 has leaves broader than the type
with the reticulations dark and well marked below, but not
raised.

I have seen type material of E. parva C. B. Rob., and
E. sinubanensis Elm., and have no hesitation in reducing
them, as Merrill and Perry do. The Philippine specimens
are recorded from ridge forest up to 900 m., while in Malaya
the species appears always to be a lowland one, usually near
the sea behind mangrove.

When Roxburgh published his E. myrtifolia the specific
epithet had already been used in Eugenia. The next oldest
name appears to be supplied by Syzygium oleinum Wall.,
nom. nud., which was transferred to Eugenia by Wight, loc.
cit. This might also be considered a nomen nudum, for
Wight gave no description or reference to a figure. But
the name seems to be validated by his remarks—"These

Vol. XII. (1949).
two” (E. (S.) myrtifolia Roxb. and E. (S.) oleina R.W.) “if distinct, are so like each other that I cannot see by what characters they can be defined, I look upon them, judging from specimens only, as identical”. Merrill and Perry do not admit the validation of the name by Wight, and if they are correct it never has been validated. If Merrill and Perry’s synonymy is correct, which I have not been able to check, the next oldest available epithet appears to be supplied by Syzygium campanulatum Korth., Nederl. Kruidk. Arch., I, 203, (1847).

74. Eugenia Benjamina King, Mat. F.M.P., No. 12, 106 (1901), excl. specimina sumatrana; Ridl., F.M.P., I, 734, excl. distrib. (Fig. 30a).

Perak: Waterfall Hill, Taiping, 1,200 feet, Wray 2632 (syntype); Maxwell’s Hill, 2,500 feet, Wray 2797, 3204 (syntypes); Larut, 1,500–2,000 feet, Kunstler 7306 (syntype).

Distrib: Endemic.

A shrub or small tree. Twigs slender, terete, bark smooth, pale brown. Leaves thinly coriaceous, narrowly elliptic, oblong elliptic, or oblanceolate elliptic, apex caudate acuminate, acumen up to 1-5 cm. long, base cuneate; up to c. 7-5 cm. long and 3-5 cm. broad; both surfaces drying pale brown and conspicuously and closely gland dotted; midrib impressed above, elevate below and pustulate; primary nerves numerous and close together, meeting in a nearly straight intramarginal nerve close to leaf margin, raised and fine on both surfaces, the close reticulation also raised on both surfaces and as distinct as primaries; petiole slender, wrinkled and pustulate, narrowly channelled above, c. 5 mm. long.

Racemes axillary and terminal, shorter than leaves, reaching c. 3 cm. long, few flowered but rather dense, rachis short, stout, angled, reddish or greyish scurfy; flowers pale green, filaments white, red at base, on rather stout pedicels of varying length, sometimes sessile, buds globose clavate 8–10 mm. long; calyx c. 7 mm. long, rather abruptly contracted below lobes into a stout cylindrical angled tube c. 5 mm. long; lobes 4, spreading, subpersistent, ovate rounded, rather thick with thin margins, conspicuously pellucid dotted, c. 3 mm. across and 2-5 mm. tall; petals 4, free, orbicular, with conspicuous pellucid glands, c. 5 mm. diam.; stamens numerous, filaments slender, subulate, with scattered pustulate glands, reaching 10–11 mm., anthers broadly ovate oblong, c. 0-6-0-7 mm. long, without connective gland; style stouter than filaments, glandular pustulate, c. 10 mm. long; ovary 2-celled.

Gardens Bulletin, S.
Fig. 30. a, E. Benjamina; b, c, E. syzygioides; d, E. castanea; e, f, E. longiflora.

Vol. XII. (1949).
Fruit "dark claret colour, waxy" (Kunstler), crowned by the deeply 4-lobed calyx limb.

The caudate acuminate glandular leaves with close raised venation on both surfaces, the very short few flowered condensed inflorescences with rather large flowers and scurfy rachis, and the conspicuous glands on sepals, petals, stamens and style distinguish this species.

King includes here Forbes 2046 from 6,700 ft. in Sumatra, which he says "agrees absolutely in leaf with those collected in Perak", and describes the fruit of this specimen as the ripe fruit of E. Benjamina. He describes the fruit of Kunstler 7406 as unripe, but judging from Kunstler's field note in which he says "fruit dark claret colour, waxy", the fruit of this specimen is nearly, if not quite ripe. In my opinion Forbes' specimen does not agree with the Perak collections, the leaves being much thicker with coarser and more distant nerves, and this, along with the much larger fruit without persistent calyx lobes, shows it to belong to some other species.

75. Eugenia syzygioides (Miq.) comb. nov. (Fig. 30b, c).

Common in the lowlands from Langkawi and Trengganu to Singapore, chiefly in secondary growth, and often on rocky and sandy seashores.

Distrib: Burma, Assam, Siam, Andamans, Indo-China, Malaysia.

A small to large tree; bark dull reddish brown or greyish brown, fibrous, in young trees nearly smooth, becoming longitudinally fissured, shaggy and flaky. Twigs slender, terete, drying greyish to reddish brown, bark smooth or somewhat flaky. Leaves thinly coriaceous, lanceolate or oblong lanceolate to elliptic or ovate elliptic, apex acuminate or caudate acuminate, base cuneate, from c. 4-10 cm. long and 1.5-5.5 cm. broad, upper surface drying

Gardens Bulletin, S.
reddish brown to nearly black, more or less polished, minutely punctate, lower surface slightly paler, dull, eglandular; midrib narrowly impressed above, elevate below; primary nerves numerous (to about 25 pairs) and close together, slightly ascending and running straight or curving up rather irregularly to an almost straight intramarginal nerve c. 1 mm. or less from leaf margin, raised, fine and distinct below as are the secondaries and close reticulations which are hardly if at all distinguishable from primaries, less distinct above, sometimes raised, sometimes slightly impressed, sometimes almost invisible; petiole slender, channelled above, less than 1 cm. long.

Panicles axillary or terminal, more usually axillary, not more than c. 6 cm. long, usually shorter, often clustered, peduncled, sometimes lax, sometimes rather dense, branches very slender, distant, spreading-ascending, compressed or 4-angled with dark bark, bracts and bracteoles minute, subpersistent, ovate acute; flowers white with reddish calyx, sessile in threes or fours at branchlet ends; calyx campanulate, c. 6 mm. long and 3 mm. across mouth, contracted rather abruptly into a slender pseudostalk 2-2.5 mm. long; lobes 4, subpersistent, very small, triangular, blunt, c. 1 mm. across base and less than 0.5 mm. tall; petals 4, free, orbicular, 2-2.5 mm. diam., sparsely pellucidly glandular; stamens numerous, filaments slender, subulate, up to c. 4 mm. long, anthers broadly oblong, c. 0.3-0.4 mm. long, connective gland small but distinct; style much stouter than filaments, subulate, c. 5 mm. long; ovary 2-celled, multiovulate.

Fruit ripening dark cherry red to purple black, globular or more or less depressed globular, 8-12 mm. diam., with conspicuous calyx rim c. 1 mm. high; pericarp 1-3 mm. thick, fleshy, seed oblong to globose, testa thick, rather leathery, or crustaceous, adhering closely to cotyledons; cotyledons side by side, nearly equal, inner faces plane or slightly concave, point of attachment to hypocotyle close to periphery; plumule and radicle small.

This common plant has been for many years interpreted as E. cymosa Lamk., although Gagnepain in Fl. Gen. Indoch., loc. cit., indicates that the interpretation is erroneous. I have seen a photograph of the type of Lamarck's species, from which it is obvious that it is not our plant. The specimen consists of a twig with two leaves, and inflorescence and two detached flowers. The leaves are rounded or very slightly cordate at the base, broadest below the middle and with an acute acumen. The leaves of the Malayan plant are narrowed or cuneate at the base, the blade is almost always broadest about the middle, and the acumen
is blunt. The flowers of *E. cymosa* Lamk. are much larger than those of our plant and the calyx of quite a different shape.

A note by Dr. Gagnepain on Lamarck's type reads: "Ce rameau n'appartient pas a la même espèce que les fleurs. Voyez les échantillons de l' *Eugenia cymosa* dans le herbier général. Mai 1917." So that perhaps the type is a mixture. In any case no part of it has anything to do with our plant.

Merrill and Perry in Journ. Arn. Arb., loc. cit., are the first to use the correct specific epithet for our plant, although their name might be liable to rejection as a tautonym. I have seen authentic material of *Jambosa syzygioides* Miq. from the Rijks Herbarium in Leiden, namely specimens bearing the names *Jambosa syzygioides* and *Calyptranthus caryophyllifolia* in Miquel's and Blume's handwriting and there can be no doubt that our plant belongs here.

Perak: Ulu Bubong, Kunstler 10521.
Johore: Sungai Kayu Ara, Mawai-Jemaluang road, SFN 29249 (Corner); Sungai Berassau, Mawai-Jemaluang road, SFN 28977 (Corner).

Distrib: Borneo.

A small tree; bark dull reddish brown, nearly smooth. Youngest twigs 4-angled, brown when dry and distinctly puberulent-papillose, the older twigs terete with brown smooth or rather flaky bark. *Leaves* thinly coriaceous, narrowly oblong to oblong elliptic, apex caudate acuminate, the acumen c. 1 cm. long, obtuse, base cuneate, up to c. 8 cm. long and 2.5 cm. broad (in Malayan material), upper surface drying dark brown to blackish brown, more or less polished, very minutely or obscurely punctate or minutely rugulose pustulate, lower surface reddish brown, minutely glandular pustulate; midrib narrowly impressed above, elevate below; *primary nerves* 25–30 pairs, close together, spreading, meeting in an almost straight intra-marginal nerve c. 1 mm. from leaf margin, slightly raised above and very faint, fine but distinct below as are the equally distinct secondaries and reticulations; petiole slender, up to c. 5 mm. long.

Gardens Bulletin, S.
Panicles terminal or axillary; up to c. 7-5 cm. long, peduncled or branched from base, the rachis and branches slender, 4-angled and compressed, minutely puberulent-papillose; flowers white, sessile in threes at the ends of the short ultimate branchlets, buds narrowly clavate, c. 7 mm. long; calyx after anthesis funnel shaped, c. 6-7 mm. long, gradually narrowed into a slender pseudostalk c. 3-4 mm. long, the lower half minutely puberulent-papillose; lobes 5, persistent, very shallow and obscure, broad and rounded or broadly triangular subacute; petals falling as a calyptra but free, or slightly agglutinated, broadly ovate or orbicular, pellucidly gland dotted, c. 2-3 mm. diam.; stamens numerous, filaments slender, subulate, apparently glandular, up to c. 6 mm. long, anthers ovate or oblong, c. 0-3 mm. long, connective gland inconspicuous; style stouter than filaments, c. 7 mm. long, gland inconspicuous; ovary 2-celled;

Fruit (very young) globular or ovoid, c. 4 mm. diam., gland dotted, crowned by the conspicuous calyx rim c. 1-5 mm. tall and 2 mm. across, bearing the persistent calyx lobes, base contracted into a pseudostalk.

This species differs from E. syzygioides particularly in the scurfy inflorescence branches and young twigs and the less abrupt narrowing of the calyx into the pseudostalk. The leaves tend to be narrower and more oblong than those of E. syzygioides.

South Trengganu: Bukit Kajang, 500 feet, SFN 30431, 30451, 30497 (Corner).
Perak: Larut, within 100 feet, Kunstler 3422.
Distrib: Endemic.

A tree 18-24 m. tall, c. 25-60 cm. diam. 2 m. from ground, trunk cylindric. Bark dull greyish, pallid, smooth, entire, faintly marked with transverse ridges but even in other places; inner bark thin, greyish brown; wood pallid buff, darkening on exposure. Twigs slender, terete, youngest brown or reddish brown, older ones whitey brown to pale grey, bark smooth or finely cracked. Leaves thinly coriaceous, ovate, ovate lanceolate to oblong lanceolate, or narrowly elliptic, apex caudate acuminate, the acumen up to c. 2 cm. long, base cuneate, from c. 4 cm. × 2 cm. to 9.5 cm. × 4.5 cm.; upper surface drying dull brown to lead colour, lower usually paler, brown to reddish brown; petiole slender, wrinkled and pubulate below, 3-5 mm. long; midrib narrowly channelled above, raised below, more or less pubulate, especially towards petiole; primary nerves numerous, close and parallel, not distinguishable from

Vol. XII. (1949).
seconds, raised on both surfaces, sometimes much darker than surrounding leaf surface; intramarginal nerve very close to and partly hidden by the revolute leaf margin; upper surface minutely punctate, lower sparsely black dotted.

Panicles axillary and terminal, usually 4–5 cm. long but reaching c. 7 cm., peduncle and branches slender, spreading, compressed or angled, with dark, longitudinally wrinkled, often pubescent bark; flowers sessile in threes at ends of very short branchlets, or these branchlets so reduced that the flowers appear umbellately arranged; buds c. 5–6 mm. long; calyx tube funnel shaped, usually more or less pubescent, narrowing to a slender pseudostalk; lobes 5, broad, shallow, rounded, c. 0.5 mm. wide and 0.3 mm. tall; petals calyptrate or occasionally free, orbicular; stamens up to c. 5–6 mm. long, anthers oblong, c. 0.4 mm. long with conspicuous brown connective gland; style rather stout, 5–6 mm. long; ovary 2-celled. Fruit unknown.

This species is evidently closely allied to E. syzygioides, but differs in the longer pseudostalk and the funnel shaped pubescent calyx tube. Sterile material can hardly be distinguished from E. syzygioides in the herbarium except perhaps by the usually narrower and more oblong leaves, but in the field the two species are distinct, E. pseudosyzygioides having a smooth pale bark, and E. syzygioides a more or less fissured and flaky dark red or fuscous brown bark.

Perak: without locality, Scortechini s.n.

Known only from this collection, consisting of 5 sheets in Herb. Calcutta.

?A tree, twigs terete, with smooth bark, dark brown or dark reddish brown, in places pale grey and finely cracked. Leaves coriaceous, oblong lanceolate or oblong elliptic, up to c. 9 cm. × 3.75 cm., apex acuminate, base narrowed, upper surface drying olivaceous brown or reddish brown, slightly shining, minutely and densely punctate, lower surface paler and duller, minutely and densely black pubescent-dotted; midrib sunk above, raised below and pubescent except at apex, longitudinally wrinkled; primary nerves c. 12–15 pairs, very fine and slender above, slightly raised, fine below, but rather more conspicuous than on upper surface, raised, meeting in a fine intramarginal nerve c. 1 mm. from the recurved leaf margin; secondaries and reticulations fine and raised below but distinctly less conspicuous than primaries; petiole c. 1 cm. long, rather slender, deeply channelled above.

Gardens Bulletin, S.
Inflorescences crowded, terminal or in upper axils, spiciform or paniculate with few branches, up to c. 4-5 cm. long, rachis compressed or angled with strongly striate pale brown bark. Flowers sessile, crowded at or near ends of inflorescence branches; calyx in bud c. 6-6.5 mm. long and 3.5-4 mm. across mouth, obconic or campanulate and tapering gradually to base, pseudostalk very short, not evident, the mouth rather abruptly expanded into 4 deep rounded persistent petals c. 2 mm. high and 3 mm. across; petals 4, free, reflexed after anthesis, more or less orbicular, c. 5 mm. across, gland dotted; stamens numerous, filaments slender, up to c. 9-10 mm. long, anthers oblong, c. 0.7-0.8 mm. long, connective gland obscure or absent; style rather stout, tapering to apex, c. 8 mm. long; ovary 2-celled with several or many ovules in each cell. Fruit unknown.

Distinctive amongst Malayan species in the short crowded inflorescences and the crowded flowers with conspicuous calyx lobes and petals. The inflorescences recall those of E. rugosa but the flowers and foliage are quite different. The flowers resemble those of E. longiflora but are shorter, with more conspicuous petals.

Very common in the lowlands from Kedah to Singapore, in secondary growth, by rivers, and in forest.

Distrib: Burma, Indo-China, Siam, Malaysia, Philippines.

A small or medium sized tree, old trees sometimes large—up to c. 22 m. tall—and spreading, occasionally stilt

Vol. XII. (1949).
rooted; bark smooth and entire or closely and faintly transversely rugose with persistent leaf scars, eventually shallowly flaky-cracked in small thin superficial pieces, not papery flaky, pinkish- or rufous-fawn; inner bark fawn or fawn drab. Twigs slender, terete, bark smooth, drying pale brown or reddish brown. Leaves thinly coriaceous, elliptic lanceolate or ovate lanceolate to narrowly elliptic or oblong elliptic, apex rather abruptly acuminate or caudate acuminate, base cuneate, from c. 5–11 cm. long and 2–5 cm. broad; upper surface shining, drying olivaceous brown to dark brown, usually minutely and closely punctate, lower surface pale brown to reddish brown, usually with scattered black black dots; midrib impressed above, elevate below; primary nerves numerous and close together, indistinct above and slightly impressed, raised below and very fine, more distinct than on upper surface, intramarginal nerve shallowly looped, c. 1 mm. from leaf margin, secondaries and close reticulations below almost or quite as distinct as primaries; petiole slender 0.5–1 cm. long.

Panicles terminal or from upper axils, shortly pedunculate or branched from base, or clustered, rather dense, up to c. 10 cm. long and wide, rachis and branches slender, 4-angled, the youngest branchlets compressed, bark dark brown and smooth when dry; flowers white or pale green or pale pink, fragrant, in threes or twos or sometimes solitary at branchlet ends, sessile or shortly pedicellate, the minute broad bracts and bracteoles subpersistent, buds globose clavate, c. 7 mm. long; calyx cylindric funnel shaped, somewhat constricted below lobes and tapering gradually to base, c. 6 mm. long, striate and somewhat 4-angled; lobes 4, nearly equal, broadly oblong, rounded or truncate, conspicuous, persistent, sometimes conspicuously gland dotted, c. 2–3 mm. across and 2 mm. tall; petals 4, free, thin, orbicular, sparsely pellucidly gland dotted, c. 3–4 mm. diam.; stamens numerous, filaments slender, subulate, up to c. 13 cm. long, anthers oblong ovate, c. 0.6 mm. long, without connective gland; style much stouter than filaments, c. 10 mm. long; ovary 2-celled.

Ripe fruit oblong ovoid, up to c. 1.3 cm. long and 1 cm. across, opaque white, crowned by the 4 persistent incurved calyx lobes c. 1.5 mm. high, surrounding a deep narrow excavation c. 3 mm. diam.; style not persistent but leaving a brown scar at base of excavation; pericarp pure white, pithy-pulpy, sweetish and faintly aromatic, c. 2–3 mm. thick; seed oblong ovoid, c. 1 cm. long and 0.6 cm. across, testa brown, rather thick, crustaceous, adhering closely to the cotyledons; cotyledons superposed, nearly equal or rather unequal, outer surfaces smooth, pale green, very minutely

Gardens Bulletin, S.
gland dotted; inner faces plane or nearly so, attachment to hypocotyle near the centre or the periphery by very short broad stalks, radicle and plumule small, often faintly tinged purplish pink. Germination hypogeal, young shoot deep pink, strongly 4-angled.

I have examined a fragment of the type of *Syzygium longiflorum* from Presl’s herbarium (collected by Cuming in the Philippines) and have no doubt our plant is the same. Indeed the Malayan material matches it more closely than the bulk of the Philippine material identified with it, the latter having as a rule larger flowers.

E. longiflora and *E. tumida* have been somewhat confused in Herb. Singapore and Herb. Calcutta and possibly elsewhere, due to the close similarity in foliage. Sterile material or material in young bud is not determinable with certainty, but in flowering or fruiting specimens the differences are obvious and may be tabulated conveniently as follows:

E. longiflora

1. Calyx lobes deep, oblong, persistent.
2. Calyx tube not swollen above base, more or less 4-angled after anthesis.
3. Fruit oblong or ovoid, not more than about 1½ cm. long, crowned by the 4 enlarged calyx lobes, pure white when fully ripe.

E. tumida

1. Calyx lobes broad, shallow, dropping soon after stamens.
2. Calyx tube usually slightly swollen just above base, not 4-angled.
3. Fruit globose or depressed globose, c. 2 cm. diam., crowned with narrow tubular calyx rim, dark brownish green when fully ripe.

Common in the lowlands from Kedah to Singapore, in secondary growth and forest. There are two collections only from Penang, Cantley’s collector 3128 and Phillips s.n. The species has not been recorded again from Penang and these collections may be wrongly localised.

Distrib: Siam, Borneo.

Vol. XII. (1949).
A small tree, bark pinkish grey, nearly smooth, very like that of *E. longiflora*. Youngest twigs 4-angled, older ones terete, smooth, drying pale brown to whitish brown; *Leaves* coriaceous, elliptic lanceolate or ovate lanceolate to narrowly elliptic or elliptic oblong, apex rather abruptly acuminate, base cuneate or narrowed rather abruptly on to petiole, c. 4 cm. × 1·5 cm. to 11 cm. × 6 cm.; upper surface shining, drying brown to blackish brown, sometimes very minutely punctate, lower surface dull, paler, usually minutely gland dotted; midrib impressed above, elevated below; *primary nerves* numerous and close together, indistinct above and slightly impressed, raised below and very fine, usually distinct, intramarginal nerve irregularly looped, close to leaf margin; secondaries and reticulations indistinct or invisible above, very fine below, slightly less distinct than primaries; petiole slender, c. 1 cm. long.

Panicles axillary and terminal, up to c. 10–11 cm. long and about as wide, sometimes longer, many flowered, pyramidal or corymbose, usually long peduncled, rather laxly branched, the rachis, branches and branchlets slender, acutely 4-angled or sometimes narrowly winged, bark brown, smooth or slightly pubescent, bracts and bracteoles minute, triangular acute, subpersistent; *flowers* fragrant, calyx yellowish, stamens white, sessile, in twos, threes or clusters at ends of the short ultimate branchlets, buds clavate, c. 6–6·5 mm. long; *calyx*, after anthesis, more or less funnel shaped or narrowly campanulate, c. 5·5–6 mm. long, the tube vertically striate, very gently tapered to about half, then slightly constricted, and tapered into a stout, not well defined pseudostalk, c. 3 mm. long, slightly swollen about the ovary; lobes 4, deciduous, broad shallow and rounded, less than 0·5 mm. tall; *petals* 4, free or falling as a calyptra with the two outer petals free and the inner more or less agglutinated, orbicular, conspicuously pellucidly gland dotted, c. 2·5 mm. diam.; *stamens* numerous, filaments slender, subulate, outer ones reaching c. 7–8 mm., usually somewhat shorter, anthers oblong, c. 0·6 mm. long, connective gland small and inconspicuous; *style* subulate, much stouter than filaments, c. 7 mm. long; *ovary* 2-celled.

Fruit pale green, finally greenish brown to dull brown, often slightly vertically ridged, depressed globose, c. 2·5 cm. across and 2 cm. high, the apical calyx tube remains consisting of a narrow small tube c. 3 mm. diam. and 1 mm. high; pericarp pithy, slightly juicy, sweet, 2–4 mm. thick, seed lying more or less loosely within; testa white, turning brown, thick, pithy, crustaceous, adhering closely to cotyledons; cotyledons side by side, surfaces slightly wrinkled, shining, pale green or almost white, minutely

Gardens Bulletin, S.
gland dotted; inner faces nearly plane, only slightly ridged, attachment nearly central, sessile or with exceedingly short broad stalks, plumule rather large, radicle small. Germination hypogaeal.

Two collections from Johore—Bukit Tinjau Laut, SFN 37086 (Ngadiman) and Mawai, SFN 34707 (Ngadiman) differ from E. tumida in the rather thicker leaves with spaced primary nerves, bark of trunk and twigs paler, inflorescence branches stouter, compressed and not sharply angled, and the stamens a little longer. The shape of the calyx is that of E. tumida.

81. Eugenia linocieroidea King, Mat. F.M.P., No. 12, 118 (1901); Ridl., F.M.P., I, 749. (Fig. 31b).

PERAK: Relau Tujor, 200 feet, Wray 1898, 2595 (syntypes); Gopeng, within 100 feet, Kunstler 4580 (syntype); Batang Padang, 300–500 feet, Kunstler 7980, 8094 (syntypes).

SELANGOR: Rantau Panjang, Forest Dept. FMS 12776; Ginting Simpah, Forest Dept. FMS 29803.

SINGAPORE: Bukit Timah, SFN 34775 (Henderson), SFN 34982 (Corner), SFN 36116 (Kiah).

Distrib: Endemic.

A tree up to c. 18 m. tall, bark pinkish brown, smooth or finely tesselately wrinkled or creviced or irregularly pimply; inner bark very thick, c. 2 cm., dark blood red with sticky sap. Young twigs obtusely or acutely 4-angled, older twigs terete, bark brown, nearly smooth. Leaves coriaceous, lanceolate or oblanceolate or elliptic lanceolate, or elliptic to ovate elliptic, apex acuminate or cAudate acuminate, base cuneate, from c. 3-5 cm. to 8 cm. long and 1-5 cm. to 4 cm. broad; upper surface shining, drying from brownish green to blackish brown, minutely punctate, lower surface paler and duller, black dotted; midrib impressed above, elevate below; primary nerves numerous and close together, ascending slightly and running straight to an intramarginal nerve very close to the leaf margin, very fine and raised on both surfaces, or almost invisible above, reticulations close, usually very slightly less distinct than primaries; petioles very slender, from c. 3–10 mm. long.

Panicles terminal or from upper axils, up to c. 6 cm. long and 8 cm. across, much branched and densely flowered, the branches spreading-ascending, obtusely 4-angled with smooth reddish brown bark, the ultimate branchlets acutely angled or almost winged; flowers white, sessile or shortly pedicelled, in threes or clusters at branchlet ends, buds globose clavate c. 7 mm. long; calyx c. 5 mm. long, funnel

Vol. XII. (1949).
Fig. 31. a, *E. tumida*; b, *E. linocieroidea*; c, *E. yoniocalyx*; d, *E. cyrtophyloides*; e, *E. cerina*.

Gardens Bulletin, S.
shaped, contracted below lobes into a stout, tapering, angled and ridged tube; lobes 4, persistent, broadly ovate rounded, c. 2 mm. across and 1-5 mm. tall; petals 4, free, orbicular, 3-3.5 mm. diam.; stamens numerous, up to 7-8 mm. long, filaments slender, subulate, anthers broadly elliptic oblong, c. 0.4 mm. long, without connective gland; style stouter than filaments, c. 7 mm. long; ovary 2-celled.

Fruit oblong globose, vertically ridged or corrugate or almost smooth, c. 1 cm. long, apex with the 4 reddish, swollen, incurved calyx lobes; seed 1, cotyledons sessile, attached to hypocotyle near their centres, inner faces almost plane; germination hypogeal.

This species resembles E. longiflora but differs from it in the very thick bark, the stouter inflorescence branches, the more angled calyx tube and the different fruit.

The specimens from Bukit Timah, Singapore differ from the rest in their rather broader leaves and shorter panicles.

82. Eugenia goniocalyx Ridl., F.M.P., V (Suppl.), 309 (1925). (Fig. 31c).

Pahang: Fraser Hill, 4,000 feet, SFN 11456 (Nur), type collection; Perak-Pahang boundary, Cameron Highlands, Forest Dept. FMS 28109; Sungai Yatang, Cameron Highlands, Forest Dept. FMS 34016; Brinchang, Cameron Highlands, 5,000 feet, SFN 31288 (Holttum).

Distrib: Endemic.

A tree c. 12 metres or more tall. Youngest twigs slender, 4-angled, older ones terete, drying brown and nearly smooth. Leaves coriaceous, elliptic or broadly oblong elliptic, apex rather abruptly cuspidate, the cusp blunt, base cuneate, up to c. 5.5 cm. long and 3.5 cm. broad, upper surface shining, drying olivaceous or dark brown, sometimes very minutely punctate, lower surface dull, paler, sometimes glandular pustulate; midrib deeply and narrowly impressed above, elevate below; primary nerves numerous and close together, meeting in a looped intramarginal nerve c. 1 cm. from the recurved leaf margin, raised on both surfaces, fine but distinct, especially below; secondaries and reticulations almost as distinct as primaries; petiole slender, up to 6-7 mm. long.

Panicles terminal or from uppermost leaf axils, up to c. 5 cm. long, densely flowered, the branches short and rather stout, 4-angled; flowers white, usually in threes at branchlet ends, sessile or shortly pedicelled, buds clavate, 8-9 mm. long; calyx after anthesis funnel shaped, c. 7-8 mm. long,

Vol. XII. (1949).
narrowed gradually to base from below lobes, striate and sharply 4-angled; lobes 4, persistent, spreading, broad and rounded, c. 3 mm. across and 2 mm. tall; petals 4, free, orbicular, concave, c. 5 mm. diam.; stamens numerous, filaments slender, subulate, reaching c. 1-8 cm. long, anthers elliptic or elliptic oblong, c. 0.7-0.8 mm. long, without connective gland; style stouter than filaments and as long as the longest of them; ovary 2-celled.

Fruit in life green with 4 sharp vertical ridges and smaller blunt irregular ridges between them, globose when dry, c. 1-1.25 cm. diam., blackish brown to reddish brown, smooth except for about 4 sharply raised vertical lines from apex to base, apex crowned by the persistent calyx lobes; boiled up fruits c. 1.5 cm. diam., with rather obscure vertical ridges, surface wrinkled between them; pericarp very thin and leathery, testa thick, crustaceous, adhering to cotyledons; seed 1, cotyledons minutely gland dotted, side by side, one about one-third larger than the other, inner faces nearly plane, attached to the hypocotyle near the periphery by short broad stalks.

Allied to E. linocieroidea as Ridley points out, but differing in the broader leaves with rather more distinct venation, the larger flowers with much longer stamens, and in the different fruit.

83. Eugenia quadribracteata Henderson in Gardens' Bulletin, Singapore, XI, 320, fig. 11 (1947). (Fig. 34a).

Penang: Waterfall, Curtis s.n., undated.
Johore: Kota Tinggi-Mawai road, frequent in drier parts of swampy forest, SFN 30986 (Corner).
Perak: Upper Perak, 1,000 feet, Wray 3771, two sheets in Herb. Calcutta which may represent fruiting material of this species.

A tree c. 20 m. tall; twigs stout, terete, bark smooth or creviced or slightly flaky, brown or greyish brown. Leaves generally oblong elliptic, occasionally tending to be ovate, up to c. 25 cm. long and 10 cm. broad, but generally rather smaller, apex shortly bluntly acuminate or acute, base shortly narrowed and decurrent on petiole; petiole stout, c. 1-1.3 cm. long; primary nerves very numerous and close together, hardly distinguishable from secondaries, up to about 60 pairs, fine but distinctly elevate on both surfaces; intramarginal nerve as distinct as primaries, c. 2-3 mm. from the revolute leaf margin; both surfaces densely and minutely punctate.

Inflorescences terminal or occasionally axillary, sometimes fasciculate, axis and branches as stout as or stouter than twigs, rounded or compressed or angled, up to c. 9 cm.

Gardens Bulletin, S.
long, branches distant and short, usually horizontal or somewhat decurved; flowers sessile, densely crowded in heads at the branch ends, each flower subtended by 4 broad, triangular, more or less persistent, blunt bracteoles; calyx more or less globose in bud, obconic after anthesis, c. 3–4 mm. long and 4–5 mm. across mouth, lobes 5, broadly and shallowly triangular, rounded or somewhat acute; petals calyprate; stamens c. 5–6 mm. long, style about the same length. Immature fruit globular or somewhat depressed globular, 5–6 mm. diam., crowned by the calyx rim.

This species is a distinct one in its large closely veined leaves and the stout inflorescence with the conspicuously bracteolate flowers in heads.

84. **Eugenia cyrtophyloides** Ridl. in Journ. Roy. As. Soc. Str. Br., LXXIX, 65 (1918); F.M.P., I, 749. (Fig. 31d).

Pahang: Wray's Camp, Tahan, Ridley 16274, type collection. Known only from this collection. Perhaps allied to *E. cerina*, but not greatly resembling it.

A tree with pale reddish bark (fide Ridley). Twigs terete with pale bark. Leaves lanceolate, acuminate, base long narrowed, decurrent on petiole, up to c. 8 cm. long and 2.5 cm. broad, petiole 3–5 mm. long; midrib channelled above, boldly raised below and more or less keeled; primary nerves c. 30 pairs, raised above and very slender, slightly raised below and very inconspicuous, meeting in a faint intramarginal nerve usually hidden by the revolute leaf margin; secondaries and reticulations hardly less distinct than primaries; upper surface usually more or less polished, drying greenish, lower surface dull, greenish brown with black gland dots.

Panicles terminal, up to c. 7 cm. long and 4 cm. wide, usually with a pair of branches c. 3–4 cm. long from near the base and two or three shorter pairs higher up the rachis, the branches not very stout, ascending, compressed or 4-angled, with striate bark; flowers in groups of threes at the ends of the short ultimate branchlets, sessile or very shortly pedicelled, calyx tube c. 3–4 mm. long, gradually narrowed to a very short stout pseudostalk, the tube funnel shaped in the open flower; lobes 4, triangular ovate, quite distinct; petals 4, falling as a calyptra but separable, rather thick, gland dotted, unequal, the two larger broadly ovate rounded, c. 1.5 mm. across, the two smaller ones narrower. Stamens rather numerous (more than 20), c. 1.5 mm. long, filaments broad, anthers oblong, connective gland visible; style short. Fruit unknown.

Vol. XII. (1949).

Common in the lowlands from Penang to Singapore, often in swampy forest and near rivers.

Distrib: Sumatra, Borneo.

A *tree* up to c. 27 m. tall, fluted at base, or buttressed, the buttresses sometimes up to c. 1-5 m., or cylindric, or with a few stilt roots; bark reddish or reddish orange, rugose in older trees, more or less papery flaky, a thin green layer below surface, then a buff or yellowish fibrous brittle inner layer; wood hard, pale buff. *Twigs* terete or the youngest somewhat compressed, bark brownish, thinly papery flaky. *Leaves* coriaceous, obovate, oblanceolate or occasionally oblong, apex rounded, retuse, or with a short blunt point, or abruptly acuminate with acute or blunt acumen, narrowed at base gradually or abruptly, 2-5–11 cm. × 1-5–5 cm.; both surfaces drying olivaceous or pale brown to dark brown or reddish brown, the lower usually paler; midrib depressed above, elevate and keeled below; *primary nerves* usually about 16 pairs but often more, not conspicuous above, more or less raised below, faint and not easily distinguishable from secondaries, meeting in a slender intramarginal nerve close to the recurved leaf margin; secondaries and reticulations obscure or faint above, sometimes invisible below; sometimes almost as conspicuous as primaries; petiole 0-5–1 cm. long.

Panicles terminal or occasionally from the upper axils, lax, up to c. 12 cm. long, branches spreading, compressed, pale brown or brownish grey when dry; *flowers* small, sessile, crowded at the ends of the short ultimate branchlets, bracts and bracteoles very small and inconspicuous; buds obovoid, c. 2-75–3-25 mm. long; *calyx* campanulate or obconic, c. 2-25–2-5 mm. long and 2 mm. across mouth, narrowed to a very short stout pseudostalk c. 0-5 mm. long, mouth very obscurely and shallowly 4-toothed; *petals* calyptrate; *stamens* c. 15–30, filaments 0-5–0-75 mm. long, broad and flattened, tapering slightly from base to apex, anthers small, oblong, connective gland small and inconspicuous; style c. 0-5 mm. long, narrowly conical; *ovary* 2-celled.

Fruit oblong obovoid, 1-2–1-4 cm. long and 7–8 mm. across at widest point, apex flattened, deeply and narrowly excavate, with very short calyx rim; *pericarp* fleshy, 3–4

Gardens Bulletin, S.
mm. thick; seed more or less globose, c. 4 mm. diam., testa adhering to it but peeling off easily, leaving a thicker inner layer, beneath which is a mucilaginous coat; cotyledons more or less equal, opposing faces folded, with the large hypocotyle, which is grooved along one side, lying in the fold and extending to the periphery of the seed.

This species was described as *E. punctulata* by King, Mat. F.M.P., No. 12, 122 (1901), and Ridley, F.M.P., I, 747 followed King without comment. King’s name is a later homonym, being antedated by *E. punctulata* F. M. Bailey (1896). If this were all, only a new name would be required, but the case is complicated because King cited as a synonym *Jambosa “punctulata”* Miq., Fl. Ind. Bat. Suppl. I, 310, which may perhaps be taken as a typographical error for *Jambosa puncticulata*, the only name on p. 310 of Miquel’s work that could be meant. King saw Miquel’s plant, for he has written on a sheet of *Teysmann 3603* in Herb. Calcutta “This is the type sheet” and on the cover enclosing the sheet “Eugenia puncticulata Miq.” *Jambosa puncticulata* Miq. is not our plant. It differs considerably in the leaves, which are oblone lanceolate, acuminate, with bold, well spaced primary nerves, raised below and impressed above. King’s *E. punctulata*, therefore, must be regarded as a *mictum compositum*. A further, though less important complication, is the fact that King omitted Sumatra, the type locality of Miquel’s plant, from the distribution of his *E. punctulata*.

King probably took his specific name from *Syzygium punctulatum* Wall., which he also cited as a synonym, but which, being a *nomen nudum*, has no standing; but it might be argued that *Jambosa puncticulata* Miq. is the basynym, from which King’s species must be interpreted, in spite of the fact that what King did describe is a totally different plant. King did not make the transfer of Miquel’s name to Eugenia, and, as far as I can discover, it never has been transferred. It might be said that King’s epithet “punctulata” could be a typographical error for “puncticulata” in the same way as his citation of Miquel’s plant is probably such an error, but with Wallich’s name “punctulata” available, the supposition does not seem warranted. The epithet “puncticulata” is not now available in Eugenia for Merrill gave it to a Philippine plant in 1914.

It was therefore thought advisable to start afresh and instead of giving merely a new name to King’s plant, to re-describe the species and to indicate a type.

1416 (1912), of which fruiting specimens only are known from Palawan, Philippine Islands, from an altitude of about 225 m. I have examined type material of *E. incarnata* (Elmer 13231) and although in leaf characters it closely approaches our plant, it differs in having smooth not flaky bark on the twigs, and in its globose much wrinkled fruits which differ rather markedly from the obvoid hardly wrinkled fruits of the Malayan plant. There are other points in Elmer’s description which do not fit our plant, one being the colour of the fruits, which are said to be “of a pretty waxy or incarnatus red” and to give the tree a red appearance. Our plant has white or greenish white fruits with no red colour. *E. incarnata* is doubtless allied to *E. cerina*, perhaps closely, but in view of the scanty material available of the former, and of the differences between the two, it seems unwise to assume that they are the same.

E. cerina Henderson var. **turbinata** var. nov.

A typa folii vulgo minoribus, nervis laterabilibus pluribus, subtus plus prominentibus, pseudostipitis calycis longioribus, fructo turbinato differt.

Selangor: Sungai Tinggi, *Forest Dept. FMS* 41652, 44060.
Negri Sembilan: Singkang, *Forest Dept. FMS* 4208.
Pahang: Pekan, *Ridley s.n.*; Baloh Forest Reserve, Kuantan, *Forest Dept. FMS* 3615; Sungai Chini, Kuantan, *Forest Dept. FMS* 4106; Rompin, *Forest Dept. FMS* 17168; Sungai Bera, near Tasek Bera, *SFN* 24114 (Henderson); Tasek Bera, *SFN* 24448 (Henderson).
Johore: Kota Tinggi, *Ridley 15371, TYPE collection, holotype in Herb. Singapore; Bagan Limau, Sungai Sedili, *SFN* 23897 (Corner); Danau, Sungai Sedili, *Corner s.n.*
Singapore: Sungai Moral, *Ridley 3983 bis; Sungai Jurong, Ridley 4988; Kranji, *Ridley 4989; Bukit Mandai, Ridley 6527; Tampenis, *SFN* 7616 (Burkill).

This variety usually has smaller leaves than the typical form, with nerves more numerous and more conspicuous below, but these characters are rather variable; the flower buds are more slender (c. 4-4.5 mm. long), the calyx c. 4 mm. long and 2-2.5 across mouth, tapering more gradually, the teeth a little more evident, the stamen filaments a little narrower and not flattened, the style a little shorter. The petals are calyptrate and the ovary 2-locular as in the typical form. The chief difference is in the fruit, which in this variety is turbinate, the apex expanded then abruptly contracted into a swollen stalk which often has a slight kink on one side, c. 1.5 cm. long and 7-8 mm. across the widest part of apex; pericarp fleshy with a fibrous endocarp; seed dark brown, oblong, 6-7 mm. long and 4 mm. across, testa adhering to cotyledons closely, consisting of an outer

Gardens Bulletin, S.
fine transparent coat and an inner, thicker, dark brown layer, but without the mucilaginous layer of the typical form; cotyledons more or less as in the typical form, but the hypocotyle not grooved.

E. cerina Henderson var. **montana** var. nov.

A type floribus maioribus, lobis calycis conspicuis differt.

TRENGGANU: Gunong Padang, 4,000 feet, SFN 31883 (Moysey & Kinh).

PERAK: Lower Camp, Gunong Batu Puteh, Wray 1125.

PAHANG: Fraser Hill, 4,000 feet, SFN 33208, TYPE collection, holotype in Herb. Singapore, SFN 11264 (Nur), Forest Dept. FMS 22537; Cameron Highlands, Forest Dept. FMS 25920.

JOHORE: Gunong Belumut, summit, Holttum 58 (leaf specimens only).

This variety differs from the typical form in the larger and stouter flower buds, 3.5–4 mm. long, the calyx c. 3–3.25 mm. long, c. 3 mm. wide just below lobes, narrowed rather abruptly into a short stout pseudostalk c. 1 mm. long, lobes evident, broad and rounded, incurved over petals in bud and persisting as triangular points after anthesis; petals calyptrate, but the calyptra much thicker than in the typical form or in var. *turbinata*; stamen filaments more tapered to apex. Ovary 2-celled. Fruit unknown. The bark is described by the collector of the type specimens as brownish greyish dull, slightly flaky, not fissured or rugose.

86. *Eugenia avenis* (Miq.) comb. nov. (Fig. 32a).

MALACCA: Merlimau, Goodenough 1649.

JOHORE: Hadji Senawi, Ridley 11055.

SINGAPORE: sine loc, Wallich 3594.

Distrib: Sumatra.

A ? tree. Twigs slender, terete, with a smooth polished papery pale yellow layer which flakes off and reveals pale reddish brown bark beneath. Leaves coriaceous, oblanco- late, narrowly obovate, or oblong- or elliptic-lanceolate, apex acute or shortly acuminate, base cuneate, up to c. 7 cm. × 2.5 cm., upper surface somewhat polished, drying brown to dark brown, minutely and closely punctate, lower surface dull and paler with close minute dark glands; midrib narrowly impressed above, elevate below; primary nerves numerous and close together, very slightly raised on both

surfaces and almost invisible, meeting in a very obscure intramarginal nerve close to leaf margin; petiole usually less than 5 mm. long.

Panicles terminal or from upper axils, up to c. 4 cm. long, peduncle slender, 4-angled, usually long, with a few divaricate, short, slender, 4-angled, laxly flowered branches near its apex; *flowers* in threes at apices of short ultimate branchlets, the centre flower sessile, the outer ones on distinct pedicels c. 1 mm. long; buds clavate, c. 2.5–3 mm. long; *calyx* after anthesis rather widely funnel shaped, c. 2.5 mm. long, contracted rather abruptly at base into a pseudostalk c. 0.5 mm. long; lobes 4, short broad and rounded, incurved in bud, persistent; *petals* falling in a thick flat quadrangular calyptra; *stamens* few (c. 20), filaments short, subulate above, flattened at base, anthers elliptic, c. 0.2–0.3 mm. long.

Fruit more or less globular, c. 4 mm. diam., apex broad, convex, not excavate, with the very short calyx rim c. 2.5 mm. diam., and remains of calyx lobes.

King reduced *S. avene* Miq. to *E. scoparia* Duthie, but Wallich’s name is a *nomen nudum* which was not validated, by Duthie, until 1878. Miquel’s name is therefore older. I have compared a “duplicate type” of *S. avene* Miq. from Leiden and another sheet of the same collection (Sumatra, Priaman, *Diepenhorst H.B. 3083*) in Herb. Calcutta with a sheet of *Wallich 3594*, also in Herb. Calcutta. Although Wallich’s specimen is in fruit and the others in flower, there can be little doubt that they are conspecific. The other collections cited above match the Sumatran plant reasonably closely.

E. avenis is probably allied to *E. cerina*, and also to *Syzygium nigropunctatum* Merr. & Perry in Mem. Amer. Acad. Arts & Sci., XVIII, 3, 195, as these authors point out, but it differs from the latter in the narrower longer leaves and longer inflorescence branchlets.

87. *Eugenia Goodenovii* King, Mat. F.M.P., No. 12, 117 (1901); *emend.*: Ridl., F.M.P., I, 731, pro parte. (Fig. 32b).

Perak: near Ulu Selangor, 500–700 feet, Kunstler 8741.
Malacca: Ayer Kroh, Goodenough 1759, lectotype.
Distrib: Endemic.

A *tree*. Youngest *twigs* slender, compressed or 4-angled, older ones terete, bark smooth becoming slightly flaky, drying pale yellowish grey. *Leaves* thickly coriaceous, narrowly elliptic, apex shortly acuminate, base narrowly cuneate, up to c. 12 cm. × 4 cm., both surfaces drying brown, the upper somewhat polished, obscurely
punctate, the lower dull, not glandular; midrib shallowly impressed above, smooth and shining and elevate below; primary nerves about 12 pairs, c. 1 cm. apart, curving up to an intramarginal nerve c. 3 mm. from leaf margin, very obscure on both surfaces or invisible above; secondaries slightly fainter than primaries, reticulations not visible; petiole rather stout, channelled above, c. 5 mm. long.

Vol. XII. (1949).
Panicles terminal and from upper axils, short and rather densely flowered, c. 4 cm. long, usually branched from base, the branches short, spreading, angled, with brownish wrinkled bark, bracts and bracteoles small, broad and rounded, persistent; flowers usually in threes at branchlet ends, on pedicels c. 2 mm. long, or sometimes the central flower of the triads sessile; calyx nearly 1 cm. long, funnel shaped and tapered to base and rather suddenly contracted into a pseudostalk c. 1·5 mm. long; lobes 4, unequal, the two outer thick textured, broad and rounded, c. 3 mm. across and 2·5 mm. tall, the two inner rather thinner with thin margins, pellucidly gland dotted, c. 5 mm. across and 4·5 mm. tall; petals 4, falling as a calyptra, but not agglutinated and easily separable, orbicular, pellucidly gland dotted, c. 6 mm. diam.; stamens numerous, anthers on oblong, c. 0·7 mm. long, connective gland inconspicuous; ovary 2-celled, multiovulate.

As noted under E. rugosa (Korth.) Merr., King's species is a mixture, for he included under it Syzygium rigidum Wall. Cat. 3581, which is E. rugosa, one of the clavate flowered group related to E. attenuata, and quite different from the specimens quoted above which have a funnel shaped calyx with conspicuous lobes. I have therefore retained King's name for the latter group, selecting Goodenough 1759 as the type.

Perak: Sepatang, Wray 2968 (syntype); Taiping Wray 3102 (syntype); Gopeng, 300–500 feet, Kunstler 6149 (syntype).

Pahang: Sungai Bera near Tasek Bera, SFN 24110 (Henderson).

Johore: Kangka Sedili Ketchil, SFN 28622 (Corner).

Distrib: Sumatra, Borneo.

A tree up to c. 25 m. tall; trunk fluted at base; bark very slightly papery flaky, appearing smooth and entire, with persistent leaf scars, pinkish fawn to pale rufous fawn; inner bark pale fawn cinnamon darkening on exposure as does the yellowish wood. Twigs terete, bark drying dark brown, flaky. Leaves coriaceous, oblong elliptic or oblong lanceolate, occasionally oblanceolate, apex acuminate, base cuneate, from c. 5 cm. to 12 cm. long and 2 cm. to 5·cm. wide, upper surface drying greenish brown or olivaceous brown to nearly black, shining, obscurely punctate or glandular pubescent, lower surface dull and

Gardens Bulletin, S.
paler with minute close dark or concolorous pustulate glands; midrib narrowly impressed above, elevate and pustulate below; primary nerves up to 20 or 25 pairs, spreading and nearly straight, meeting in a nearly straight intramarginal nerve c. 2 mm. from the recurved leaf margin, usually raised on both surfaces, indistinct above, fine but distinct below, the secondaries and reticulations somewhat less distinct; petiole up to c. 1 cm. long.

Panicles terminal, occasionally from upper leaf axils, branched from the base, dense, corymbose, rachis, branches and branchlets rather stout, with reddish brown rugose-granular bark flaking in small square pieces; flowers sessile, densely crowded at the ends of the ultimate branchlets, buds globose clavate or obovoid, 4–6 mm. long; calyx after anthesis funnel shaped or widely campanulate, granular, 4–5 mm. long and c. 3 mm. across mouth, contracted rather suddenly at base into a rather slender pseudostalk 1–2 mm. long; lobes 5, broadly triangular, c. 1 mm. across and 0.5 mm. tall, deciduous; petals 5, falling as a calyptra but easily separable, orbicular, conspicuously pellucidly gland dotted, the outer one c. 3 mm. diam., the inner ones slightly smaller; stamens numerous, reaching 8–9 mm. long, filaments slender, subulate, anthers ovate oblong to orbicular, c. 0.4 mm. long, connective gland distinct; style stouter than filaments, c. 7 mm. long; ovary 2-celled, multiovulate.

Fruit depressed globose to nearly reniform and flattened laterally, or globose, up to c. 1.8 cm. broad and 1 cm. tall, surface shining or dull red brown when dry, smooth or minutely rugulose or pitted, apex with tubular remains of calyx tube c. 1.5–2 mm. tall and 3 mm. diam.; pericarp leathery, c. 1 mm. thick; seed 1, conforming to shape of fruit, cotyledons without testa, nearly equal, attached to hypocotyle by short broad stalks.

E. Curtisii King var. minor King, Mat. F.M.P., No. 12, 129 (1901).

Perak: Tapah, Wray 194 (syntype).
Malacca: sine loc., Harvey s.n. (syntype).
Pahang: Bentong, Forest Dept. FMS 3912; Rompin, Forest Dept. FMS 17104.

This differs from the type in having the inflorescence branches dark red rugose scurfy, not scaly flaky, the flowers either without pseudostalk or with a very short (c. 0.5 mm.) pseudostalk, the buds smaller (c. 3 mm. long), the leaves a little more oblong, upper surface smooth, not pitted, occasionally slightly pustulate, lower surface pustulate.

Vol. XII. (1949).
E. Curtisii King var. Holttumii (Ridl.) var. nov.

Pahang: Fraser Hill, 4,000-4,370 feet, *Forest Dept. FMS 7751* (Burkill & Holttum); Boh Plantations, Cameron Highlands, 4,000 feet, *SFN 32666* (Nur).

Although *E. Curtisii* is not a well-known or common species, there is sufficient variability in the collections to justify the inclusion of *E. Holttumii* as a mountain variety.

The variety differs from the typical form in the generally smaller leaves (2–7 cm. × 1–1.25 cm.) somewhat more closely nerved, the more abrupt contraction of the calyx into a very short (0.5 mm.) pseudostalk (the flowers are sessile, not pedicelled as Ridley described them) and the very small calyx lobes produced into subulate points.

89. *Eugenia setosa* King, Mat. F.M.P., No. 12, 120 (1901); Ridl., F.M.P., I, 755. (Fig. 33a).

Perak: Taiping, Wray 2704 (syntype); Larut, within 100 feet, *Kunstler 5447, 6202, 6601* (syntype), within 300 feet, *Kunstler 5266, 6793* (syntypes).

Selangor: Sungai Tinggi, Kuala Selangor, *SFN 34068* (Nur), *Forest Dept. FMS 44033*.

Distrib.: Endemic.

A shrub or small tree or ? a climber. Twigs slender, terete, densely reddish scurfy and coarsely hairy with spreading subulate hairs. Leaves thinly coriaceous, oblong lanceolate or narrowly oblong, apex abruptly acuminated or caudate acuminate, the acumen up to c. 1.5 cm. long, base rounded, up to c. 8 cm. × 2.75 cm., upper surface somewhat polished, drying greenish or olivaceous brown, minutely punctate or pustulate, lower surface greenish brown to dark brown, minutely and closely pustulate; midrib narrowly impressed above, elevate below and clothed with coarse subulate spreading hairs; primary nerves numerous (up to c. 35 pairs) and close together, subhorizontal, meeting an intramarginal nerve less than 1 mm. from the somewhat undulate and recurved leaf margin, slightly raised and very fine and faint on both surfaces, the secondaries and lax reticulations hardly visible above, slightly fainter below than primaries; petiole very short, 2–3 mm., leaves appearing sessile.

Panicules terminal or from upper leaf axils, up to c. 8 cm. long, on long peduncles, branches numerous, slender, spreading, all covered with the same reddish scurf and coarse hairs as twigs; flowers rather crowded on the short ultimate branchlets, white, sessile, bracts and bracteoles minute, narrowly triangular acute, subpersistent, buds globose clavate; calyx campanulate, c. 5 mm. long and 3 mm.

Gardens Bulletin, S.
Fig. 33. a, *E. setosa*; b, *E. pauper*; c, *E. Klossii*.

across mouth, contracted about the middle into a rather slender pseudostalk c. 2 mm. long; lobes 5, deciduous, broadly triangular acute, less than 1 mm. across and 0.5 mm. tall; petals 5, probably falling as a calyptra, but the outer two free, orbicular, c. 2 mm. diam., pellucidly gland dotted, the inner three partially agglutinated; stamens numerous, filaments slender, subulate, up to c. 4 mm. long, anthers narrowly ovate, c. 0.4 mm. long, connective gland small but distinct; style stouter than filaments, glandular pustulate, c. 6 mm. long; ovary 2-celled.

Fruit turbinate, crowned by the small truncate calyx rim, covered with minute pellucid granule-like glands, diam. c. 9 mm. (ex King).

This species is allied to E. Curtisii var. minor and var. Holttumii, but it differs markedly in the rounded base of the leaf, the scurfy and coarsely hairy twigs and inflorescence branches, the different calyx lobes and the longer pseudostalk.

Several of Kunstler’s collections are described on their labels as “creepers” clinging to stems of trees. The other collections cited, where a field note was made, are described as shrubs or small trees. If Kunstler made a mistake, it is curious that he did so more than once.

90. Eugenia pauper Ridl. in Journ. Roy. As. Soc. Str. Br., LXXIX, 65 (1918); F.M.P., I, 745. (Fig. 33b).

Negri Sembilan: Gemas, SFN 4481 (Burkill).
Johore: Gunong Pulai, Ridley 12175 (syntype); Gunong Panti, Ridley 4200 (syntype), cited by King under E. pendens Duthie; Sungai Tebrau, Ridley 13219; Mount Austin, Ridley 11992; Pulau Tinggi, SFN 939 (Burkill); Sungai Pelepah, SFN 20005 (Nur); Sungai Berassau, Mawai-Jemaluang road, SFN 28978 (Corner); Ulu Segun, Gunong Panti, SFN 30697 (Corner).

Singapore: Serangoon road, Ridley 8411, 8412; Bukit Timah, Ridley s.n., 8449 (cited by King under E. variolosa King), 11136; Botanic Gardens, Ridley 6915, 6915a, 8944; Reservoir Jungle, SFN 32529 (Corner).

Distrib: Endemic.

A small tree or treelet up to c. 7 m. tall, trunk slightly stilted at base; bark slightly papery flaky, pale rufous; inner bark pallid brownish, green below surface, very thin. Twigs slender, terete, bark reddish brown. Leaves thin, dark green in life and pale beneath, broadly or narrowly elliptic, occasionally elliptic oblong, up to c. 18 cm. long and 7 cm. broad but usually smaller, apex cuspidate, the acumen varying much in length; base cuneate; petiole finely wrinkled, deeply and narrowly channelled above, variable in length from c. 5 cm. to 1.5 cm.; primary nerves usually between 10 and 16 pairs, finely impressed above, raised below and very distinct, from 6 mm. to 2 cm. apart, curving

Gardens Bulletin, S.
very gently or running nearly straight to a well marked intramarginal nerve 2–5 mm. from leaf margin; secondaries and reticulations obscure or invisible above, when visible slightly raised, slender and raised below, much less bold than primaries; upper surface usually drying dark or blackish brown, sometimes minutely and densely punctate; lower surface paler, brown, usually minutely pustulate or black dotted.

Inflorescences terminal or axillary, short, reaching 2 cm. long but usually less, rather dense, branchlets slender, dark coloured with sessile flowers in threes or more at their apices, bracts and bracteoles minute, subpersistent; calyx tube cupshaped, c. 5–6 mm. long, narrowed abruptly into a rather slender pseudostalk c. 2-5 mm. long, mouth of calyx truncate; petals falling in a calyptra c. 4 mm. diam., gland dotted, the petals closely adhering and usually only the outer one separable from the others; stamens numerous, filaments slender, terete, varying much in length from 1-5 mm. to c. 6 mm., anthers small with a rather conspicuous dark coloured connective gland; style much stouter than filaments, subulate, 8–9 mm. long.

Fruit globose c. 1 cm. diam., the apical calyx rim rather prominent, c. 1 mm. tall and 2 mm. diam.

I can hardly agree with Ridley’s remark in the original description that the inflorescence of this species exactly resembles that of E. oblata Roxb. E. oblata has very much larger, usually terminal inflorescences, while its flowers are also larger with very definite calyx lobes.

91. Eugenia Klossii Ridl. in Journ. Roy. As. Soc. Str. Br., LXXIX, 65 (1918); F.M.P., I, 744. (Fig. 33c).

A tree. Twigs slender, the youngest angled, the older terete, bark dark. Leaves thinly coriaceous, narrowly elliptic or oblong elliptic, apex acuminate acute, base cuneate, c. 14 cm. long and 6 cm. wide; midrib impressed above, elevate below; primary nerves 15–20 pairs, 5–7 mm. apart, meeting a shallowly looped intramarginal nerve c. 2–3 mm. from leaf margin, indistinct above, elevate below; petiole up to c. 7 mm. long.

Panicles terminal, up to c. 6 cm. long, lax and few flowered, the rachis and few spreading branches slender; flowers solitary or in twos or threes at branchlet ends; calyx broadly campanulate, c. 6–7 mm. long, 4–5 mm. across mouth, rather quickly contracted into a slender pseudostalk 3–4 mm. long, mouth truncate; petals calyptrate; stamens numerous, up to c. 1 cm. long, style about as long.

Vol. XII. (1949).
Known only from one collection. Perhaps allied to *E. pendens*, but with much smaller flowers. Merrill and Perry state that the Bornean record of this species is based on an erroneous determination.

Common from Penang to Johore in lowland and hill forest, and in wet forest in Johore. One collection from a sapling at Bukit Timah, Singapore may be this species.

Distrib: Sumatra (*Krukoff* 4390, 4406), Borneo.

A tree, trunk not buttressed; bark entire or very faintly and shortly creviced or very finely fissured longitudinally, not flaky, pale greyish drab or greyish yellowish, very faintly pinkish; inner bark deep pink brown to red brown or blood red; sapwood white, heartwood pinkish brown, very hard. *Twigs* rather stout, obutely 4-angled or nearly terete, or acutely 4-angled with narrow wings, bark smooth, brown when dry. *Leaves* coriaceous, elliptic or oblong-elliptic, sometimes obovate, apex shortly and abruptly acuminate, base cuneate or sometimes rounded, from c. 11–28 cm. long and 5–11 cm. wide, upper surface drying olivaceous brown to blackish brown, lower surface reddish brown with or without minute scattered gland dots; midrib impressed above, prominent below; *primary nerves* from c. 10–24 pairs, 1–2 cm. apart, slightly raised and rather fine above, prominent below, basal ones nearly straight and slightly ascending, upper ones curving up to a prominent intramarginal nerve 3–5 mm. from leaf margin, with a much fainter series of loops close to the margin; secondaries and reticulations slightly raised and very fine above, elevate below but considerably less prominent than primaries, the reticulations lax; petiole up to c. 1·5 long, rather slender.

Panicles terminal or from upper leaf axils, pedunculate, usually shorter than leaves but reaching c. 25 cm. long in fruit, often clustered, rather lax, with many spreading, slender, much compressed branches; *flowers* white, sessile, in threes or clusters at the ends of the rather long and slender ultimate branchlets, buds narrowly clavate, 8–9 mm. long; *calyx* rather narrowly funnel shaped, tapered rather gradually into a slender pseudostalk c. 3–4 mm. long, mouth truncate, without lobes, c. 2·5 mm. across; *petals* falling as a hemispherical calyptra c. 2·5 mm. diam., not completely

Gardens Bulletin, S.
agglutinated; *stamens* numerous, filaments very slender, up to c. 1.3 cm. long, anthers broadly elliptic, c. 0.4 mm. long, connective gland small; *style* much stouter than filaments, 6–7 long; *ovary* 2-celled.

Fruit ripening pale green or whitish, more or less oblong globose or depressed globose, c. 18 cm. diam., apical umbilicus 3–4 mm. diam., rather deep, with persistent style base, the calyx rim not conspicuous; pericarp 2–3 mm. thick, testa adhering loosely to it; cotyledons more or less equal, surface rugose, inner faces somewhat concave, attached to hypocotyle near their centres by very broad short stalks.

A tree up to c. 20 m. tall; bark scaly with thin often transversely elongated large or small papery pieces, light greyish white, inner bark thick, pale brown. Twigs slender, terete, smooth, pale yellowish grey or whitish when dry. Leaves coriaceous, oblong ovate or elliptic oblong or ovate rotund, apex rather shortly and abruptly acuminate or obtuse or rounded, base broadly cuneate or rounded and abruptly and shortly narrowed to petiole, from c. 7–18 cm. long and 3–8.5 cm. broad, upper surface drying brown to blackish brown, shining, minutely punctate, lower surface dull and paler, minutely pitted or pustulate; midrib impressed above, elevate below; primary nerves rather numerous (to c. 30 pairs), usually about 5 mm. apart, rather irregular, meeting in an irregularly looped intramarginal nerve c. 2 mm. from leaf margin, raised on both surfaces and fine, but more distinct below, the secondaries and closely netted reticulations below almost as distinct as primaries and so giving the effect of numerous and close primaries; petioles slender, reaching 2.5 cm. long. Panicles usually from twigs below leaves, occasionally terminal or from upper leaf axils, up to c. 12 cm. long, long peduncled with several pairs of distant horizontal slender terete or slightly angled striate branches; flowers white, the calyx rose pink after anthesis, sessile in rather dense heads at ends of branches or in clusters at ends of short branchlets, buds globose clavate, 5–6 mm. long; calyx with fine raised gland dots, 4–5 mm. long, c. 3.5 mm. across mouth, narrowly campanulate, rather suddenly contracted into a stout pseudostalk c. 2 mm. long; lobes in bud 4,

Gardens Bulletin, S.
broad, thin and obscure, quickly deciduous and leaving a truncate limb; petals falling in a flat, orbicular, gland dotted calytra c. 2.5 mm. diam.; stamens numerous, filaments slender, subulate, very finely punctate, up to c. 6 mm. long, anthers oblong ovate 0.6–0.7 mm. long, connective gland

Fig. 35. *E. Cumini.*

Vol. XII. (1949).
small but distinct; style subulate, much stouter than filaments and finely punctate like them, 6–7 mm. long; ovary 1-celled, multiovulate.

Fruit black when ripe, edible, oblong to oblong elliptic, more or less oblique, c. 2 cm. × 1.75 cm., apical calyx rim prominent, c. 2 mm. tall, umbilicus narrow and deep, c. 2–3 mm. diam.; pericarp pulpy, c. 2–3 mm. thick, seed ellipsoid or oblong ellipsoid, c. 1.25 cm. × 0.75 cm., testa rather thick, more or less crustaceous, adhering closely to the smooth surface of the cotyledons; cotyledons unequal, one about one-third the size of the other, or nearly equal, conspicuously gland dotted, superposed, sessile, attached to the short broad hypocotyle near the periphery, face of the larger cotyledon concave, of the smaller convex, not interlocking or folded, or nearly plane with a short upcurved fold near point of attachment.

There is no evidence to show that this species is indigenous to the flora of Malaya. It has been collected only in the vicinity of towns and villages.

94. Eugenia oblongifolia Duthie in Hook. fil., F.B.I., II, 491 (1878); King, Mat. F.M.P., No. 12, 111, incl. var. parviflora King, excl. var. robusta King; Ridl., F.M.P., I, 744. (Fig. 36a).

PERAK: Gopeng, 500–800 feet, Kunstler 6012; near Ulu Kerling, 500–800 feet, Kunstler 8848; near Ulu Selangor (? or Slim), 400–600 feet, Kunstler 10883; Gunong Haram Parah, Scortechini 618.

MALACCA: sine loc., Maingay K.D. 746 (type collection), Ridley 1503c, 1505c.

NEGRI SEMBILAN: Telok Kemang, Forest Dept. FMS 4210.

SINGAPORE: Chan Chu Kang, Ridley 360, 4993; Gardens Jungle, Ridley 10131; McRitchie Reservoir, Corner s.n. Distrib: Endemic.

A tree up to c. 18 m. tall; bark becoming slightly scaly, brownish pink, very like that of E. longiflora; inner bark red. Twigs rather slender, youngest 4-angled or compressed, older nearly terete, smooth, drying pale brown. Leaves thinly coriaceous, elliptic or oblong elliptic, sometimes oblong lanceolate or oblanceolate, apex acuminate, often abruptly so, base cuneate or more or less rounded and shortly narrowed to petiole, from c. 6–10 cm. long and 2.5–5 cm. broad; upper surface drying olivaceous brown, shining, lower brown to reddish brown; midrib impressed above, elevate below and more or less keeled; primary nerves c. 10–14 pairs, spaced, very slender, raised and distinct on both surfaces, often pale, spreading and rather irregular, meeting in a very shallowly looped intramarginal nerve 1–3 mm. from leaf margin; secondaries and reticulations raised on both surfaces and distinct, usually slightly less prominent than primaries; petiole c. 5 mm. long.

Gardens Bulletin, S.
Fig. 36. a, *E. oblongifolia*; b, *E. Muelleri*; c, *E. pustulata*; d, *E. chloroleuca*; e, *E. fastigiata*.

Panicles terminal or from upper axils, corymbose, sometimes several together, peduncled, reaching c. 10 cm. long and as wide, the rather stout peduncle and rather slender numerous branches more or less 4-angled, the numerous branchlets slender, compressed, all with pale brown striate bark; flowers white or cream colour, sessile, usually in threes at branchlet ends; buds narrowly globose clavate, c. 7–8 mm. long; calyx c. 7 mm. long, c. 3 mm. across mouth, striate when dry, narrowly campanulate, tapering into a slender pseudostalk c. 4 mm. long, mouth in bud with 4 very shallow oblong obscure lobes, truncate after anthesis; petals falling in a depressed calyptra c. 2.5 mm. diam.; stamens numerous, filaments slender, up to c. 7 mm. long, anthers broadly oblong ovate, c. 0.3–0.4 mm. long, connective gland very small and inconspicuous; style stouter than filaments, 4–5 mm. long; ovary 2-celled.

Fruit depressed globose or transversely oblong globose, pale green when ripe, c. 1.7 cm. diam., apex with a narrow and rather deep excavation c. 3 mm. diam., fringed by the inconspicuous calyx rim; pericarp thin, seed 1, testa rather thick and crustaceous, adhering closely to cotyledons; cotyledons side by side, somewhat unequal, inner faces more or less concave, gland dotted, attached to hypocotyl near their centres by short broad stalks.

Not uncommon from Perak to Singapore in lowland forest, commonest in South Johore and Singapore, often by streams. Distrib: Borneo; Karimmon Islands (fide Ridley).

A tree reaching c. 22 m. tall, trunk narrowly fluted up to c. 2.4 m. from ground or only at base, slightly stilt rooted or not; bark nearly smooth, becoming rather finely creviced, flaky in irregular small pieces, light grey or greyish brown; inner bark light pinkish brown, wood pale brown. Twigs slender, terete, smooth, drying whitish to pale brown. Leaves coriaceous, elliptic or elliptic rhomboid or oblanceolate or obovate, apex obtuse or subacute, base cuneate or shortly and abruptly narrowed to petiole, from c. 5 cm. ×

Gardens Bulletin, S.
3 cm. or occasionally smaller to c. 11·5 cm. × 5·5 cm., dark green to yellowish green, shining above, dull and paler below, upper surface drying olivaceous brown or leaden brown to nearly black, shining, minutely punctate or rugulose pustulate, lower surface paler, usually reddish brown, sometimes minutely pustulate; midrib shallowly depressed above, elevate and keeled below; primary nerves c. 7–14 pairs, c. 0·5–1 cm. apart, ascending rather irregularly to a nearly straight intramarginal nerve c. 2–3 mm. from leaf margin, raised and slender and distinct on both surfaces, the secondaries and lax reticulations also raised on both surfaces and a little less prominent than primaries; petiole about 5 mm. long, the leaf blade sometimes decurrent upon it.

Panicles terminal, broadly corymbose, peduncled or branched from base, up to c. 10 cm. long and 14 cm. across, often much smaller, much branched, the branches and branchlets slender, spreading, 4-angled, ultimate branchlets compressed; flowers white, the calyx greenish tinged reddish, sessile in threes at ends of ultimate branchlets, buds clavate, up to 7 mm. long; calyx 5–6 mm. long, campanulate, rugulose and ridged, rather suddenly contracted into a pseudostalk rather variable in length and thickness but usually slender and c. 3–4 mm. long, mouth truncate or with very shallow and very obscure lobes; petals falling in a pellucidly gland dotted calyptra c. 3 mm. diam., almost entirely or entirely agglutinated; stamens numerous, filaments slender, subulate, reaching 7–8 mm. long, anthers ovate oblong, c. 0·4 mm. long, connective gland conspicuous; style much stouter than filaments, c. 7 mm. long; ovary 2-celled.

Fruit when ripe green, the exposed side suffused purple, globose, faintly vertically ridged, c. 1·3 cm. diam., apical umbilicus c. 4 mm. diam., without calyx rim; pericarp leathery, seed 1, testa pale brown, tough, cotyledons slightly unequal, inner faces gland dotted, nearly plane except for a triangular projection on the periphery of the smaller fitting into a recess on the other, attached near their centres to the hypocotyle by very short broad stalks; in one seed examined a small area of the opposing faces fused together.

I have not seen the type of *E. Muelleri* Miq., but Miquel’s descriptions and figure fit our plant, and Merrill and Perry, the former of whom has examined the type, have no hesitation in making the reduction of Duthie’s species.

Vol. XII. (1949).

Widely distributed from Kedah to Singapore on the west of the Main Range, but nowhere frequent except in Singapore. **Distrib:** Borneo.

A small tree, bark nearly entire or finely creviced or pimply, flaking in coarse pieces, not papery flaky, pinkish brown to vinaceous brown; inner bark pinkish, darkening on exposure. **Twigs** terete, slender, the younger ones green in life, older ones pale brown, bark smooth, drying pale brown and pustulate. **Leaves** dark green and shining above, very obscurely punctate, paler and dull below with darker gland dots, coriaceous, oblong or oblong lanceolate, apex acuminate, base cuneate, from c. 8–22 cm. long and 3–6.5 cm. broad, upper surface drying greenish or brownish, lower surface brown, pustulate; midrib impressed above, prominent and rounded below, smooth in life, pustulate when dry; **primary nerves** c. 10–15 pairs, c. 0.5–1 cm. apart, impressed above, elevate and conspicuous below, slightly ascending and curving gently up to a conspicuous shallowly looped intramarginal nerve 3–4 mm. from leaf margin, with a very faint loop very close to the margin; secondaries few, less distinct than primaries, reticulations invisible above, lax and faint below; petiole up to c. 1 cm. long.

Panicles terminal or from upper leaf axils, sometimes clustered, shortly peduncled or sessile, c. 3–5 cm. long (or rarely up to c. 11 cm.) with several pairs of spreading decussate branches, the lower ones c. 2 cm. long, the upper shorter, they and the rachis stout, green, obtusely quadrangular and grooved in life, 4-angled or compressed with brownish pustulate bark when dry; **flowers** fragrant, greenish yellow with green calyx lobes, white petals and white or yellow stamens, sessile in threes or fives at branchlet ends, buds cylindric oblong, truncate, 6–7 mm. long; **calyx** after anthesis narrowly campanulate, c. 6 mm. long, the tube minutely rugulose and glandular punctate, very slightly narrowed and rounded at base, without pseudostalk; lobes 4, subpersistent, incurved, very short and broad, subacute, c. 3 mm. across at base and 1 mm. tall; **petals** falling in a flattened calyptra, but not agglutinated, ovate orbicular, c. 3 mm. diam.; **stamens** numerous, filaments subulate, from less than 1 mm. to c. 5 mm. long, anthers oblong elliptic, c. 0.4–0.5 mm. long, connective gland rather large; **style** stouter than filaments, terete, narrowly conical, c. 3 mm. long; **ovary** 2-celled, multiovulate.

Gardens Bulletin, S.
Fruit very pale green to white, shining, oblong globose, c. 1-3 cm. long, minutely rugulose pustulate when dry, apical umbilicus rather deep, c. 5-6 mm. diam., fringed by the 4 erect, somewhat enlarged calyx lobes and bearing the style base; pericarp c. 3 mm. thick at base of fruit, rather dry and pithy, white, rapidly turning purplish on exposure; seed 1, globose, c. 6 mm. diam., testa rather thick, pithy leathery; surface of cotyledons very pale yellow, glistening, somewhat rugose corrugate; cotyledons side by side, nearly equal, inner faces very finely gland dotted, with a median ridge and furrow, attached near their centres to the large, conspicuous, pink, angled, truncate hypocotyle which is grooved along one side and reaches the periphery of the seed. Germination epigeal.

I have examined duplicates of Elmer 21223 (type of E. perpuncticulata Merr.) and Elmer 21237 and can see no differences between them and our plant, except for the slightly blunter calyx lobes of Merrill's plant.

97. Eugenia chloroleuca King, Mat., F.M.P., No. 12, 113 (1901); Ridl., F.M.P., I, 744. (Fig. 36d).

Perak: Larut, 2,000 feet, Kunstler 1901 (syntype), 1,500-2,000 feet, Kunstler 4951, 7307 (syntypes); Waterfall Hill, Taiping, Wray 2917 (syntype); Taiping Hills, Ridley 11920; Tea Gardens, Larut, Scortechini 45 (syntype).

Johore: Sungai Kayu Ara, Mawai-Jemaluang road, Corner s.n.

Distrib: Sumatra; Banguey Island (fide Ridley).

A shrub or small tree. Twigs slender, youngest 4-angled, older terete, bark polished, drying pale yellowish or brownish. Leaves coriaceous, oblanceolate, oblong lanceolate or elliptic lanceolate, apex acuminate, usually shortly and abruptly so, base long narrowed, from c. 6-17 cm. long and 2-5.5 cm. broad, upper surface shining, drying pale olivaceous or olivaceous brown, lower surface dull and paler, midrib impressed above, prominent and keeled below; primary nerves 12-16 pairs, very faint or invisible above, slightly raised below, very fine and faint, c. 0.5-1 cm. apart, spreading and curving slightly up to a very faint intramarginal nerve 2-3 mm. from the thickened and recurved leaf margin, secondaries and reticulations usually invisible on both surfaces; petiole slender, up to c. 1.5 cm. long.

Panicles usually terminal, occasionally axillary, up to c. 3 cm. long, shortly peduncled or branched from base, trichotomous, branches and branchlets acutely 4-angled with pale, wrinkled or striate bark when dry, bracts and bracteoles persistent, ovate concave subacute, c. 1 mm. long; flowers in threes on stout 4-angled pedicels c. 2 mm. long, each flower subtended by two bracteoles; calyx c. 3 mm.

Vol. XII. (1949).
long, funnel shaped, more or less 4-angled, gradually tapered to base, without pseudostalk; lobes 4, persistent, broad and rounded, sparsely gland dotted, c. 1.5 mm. across and 0.75 mm. tall; petals calytrate; stamens numerous, filaments stout, terete, glandular pustulate, up to c. 4 mm. long, anthers ovate oblong, c. 0.6 mm. long, connective gland inconspicuous; style slightly stouter than filaments, c. 2.5 mm. long, glandular pustulate, slightly broadened and truncate at apex; ovary 2-celled, apparently sometimes 4–5 celled at apex.

Fruit ellipsoid, c. 1 cm. long, rugulose when dry and pale coloured, apex with conspicuous wide calyx rim 3 mm. diam., edged with the enlarged incurved calyx lobes; seed 1, obovoid ellipsoid, cotyledons side by side, equal, commissure wavy, inner faces interlocking with triangular ridges and depressions, hypocotyle large, lying in a fold in the cotyledon face and reaching nearly to periphery of seed.

Allied to E. fastigiata as King points out, but differing in the leaves drying paler, with fewer, more widely spaced primary nerves; shorter stouter petioles; shorter inflorescences; and the fruit drying rugulose eglandular, not smooth and glandular.

Not uncommon in lowland forest and sometimes on low hills from Perlis and Kelantan to Johore.

Distrib: Tenasserim, Sumatra, Borneo, Java.

A tree up to c. 25 m. tall; bark smooth entire, slightly pustulate with lenticels, pinkish grey to pale pinkish white; inner bark pale brownish, green below surface. **Twigs** acutely or obtusely 4-angled, bark smooth, polished, drying pale brown or yellowish brown. **Leaves** coriaceous, oblanceolate or oblong obovate, apex obtuse or shortly and

Gardens Bulletin, S.
bluntly acuminate or apiculate, base cuneate or long narrowed, up to c. 16 cm. × 6 cm., upper surface drying pale brown to almost black, shining, minutely punctate, lower surface dull and paler, often reddish brown, with scattered dark gland dots; midrib flat above or slightly raised and channelled, sometimes impressed towards apex of leaf, prominent and keeled below; primary nerves up to c. 30 pairs, 3–5 cm. apart, nearly horizontal or slightly ascending, running straight or slightly curving to an intramarginal nerve c. 1–2 mm. from the cartilaginous incurved leaf margin, usually very slightly raised and indistinct above, slightly raised below and very fine, usually distinct, the secondaries and reticulations less distinct and often hardly visible; petiole up to c. 1 cm. long.

Panicles terminal or occasionally from upper leaf axils, up to c. 15 cm. long, corymbose, rather densely flowered, pedunculate, branches slender and 4-angled and grooved like the peduncle, bracts and bracteoles persistent, ovate subacute, concave, gland dotted, c. 1 mm. long; flowers pale green or white, at apices of the many short 4-angled branchlets, on rather stout pedicels 1–2 mm. long, or occasionally sessile, each flower subtended by two bracteoles; calyx shortly and broadly funnel shaped, c. 3 mm. long and 2.5 mm. across mouth, tube 4-angled, tapered gradually to a broad base, without pseudostalk; lobes 4, persistent, broad and rounded, gland dotted, c. 1.5 mm. across and 0.5 mm. tall; petals falling in a thick hemispherical calyptra, pellucidly gland dotted, c. 2.5 mm. diam.; stamens numerous, filaments flattened and strap shaped below, subulate above, with scattered pustulate glands, up to c. 3 mm. long, anthers oblong ovate, c. 0.5 mm. long, the connective gland, which is often paired, conspicuous; style stout, c. 1.5 mm. long; ovary 2-celled.

Fruit (unripe) ellipsoid or oblong, c. 1 cm. long, closely glandular, apex convex bearing the 4 enlarged and incurved calyx lobes; seed 1, conforming to shape of fruit, cotyledons side by side, equal, inner faces conspicuously glandular, with triangular projections and depressions fitting into one another, the hypocotyle stout and angled, reaching the periphery of the seed.

Examination of authentic material of E. fastigiata from Buitenzorg, and of a duplicate type and other material of E. Elmeri Merr., as well as the type of Calyptranthus floribunda Bl., on which E. confertiflora Koord. & Valet. is based, leaves no doubt that they, and E. bracteolata Wight are all conspecific. These reductions have already been made by Merrill and Perry.

Vol. XII. (1949).
99. *Eugenia pallidula* Ridl., F.M.P., l. 748 (1922). (Fig. 37a, b).

PERAK: Pondok Tanjong Forest Reserve, *Forest Dept. FMS* 9717.

PAHANG: Rembau, Temerloh, *Forest Dept. FMS* 4783 (type); Sungai Semara, Pontian, *Forest Dept. FMS* 14976.

Distrib: Endemic.

A tree (fide Ridley). *Twigs* terete, slender, bark whitey brown, smooth. *Leaves* thinly coriaceous, elliptic or obovate, up to c. 9 cm. long and 4.5 cm. broad, apex rounded or very shortly and bluntly acuminate or very shortly acute, base long narrowed to petiole; *petiole* variable, usually c. 5 mm. long; midrib conspicuously channelled above, boldly raised below; *primary nerves* c. 11–14 pairs, usually slightly impressed above and very faint, raised below, slender but quite distinct, irregular in spacing but usually 3–6 mm. apart, meeting in a rather inconspicuous, shallowly looped, intramarginal nerve c. 1 mm. from leaf margin; secondaries and reticulations almost or quite invisible above, raised below and much less distinct than primaries; upper surface drying lead brown or dark brown, minutely punctate, lower surface pale, or at least paler than upper, sometimes very minutely gland dotted.

Inflorescences terminal or from upper leaf axils, more or less paniculate, very lax, up to c. 7 cm. long, with few and widely spaced spreading slender branchlets; *flowers* in threes at ends of the secondary branchlets, or on very short tertiary branchlets, occasionally in pairs or solitary, sessile; *calyx* tube c. 6–7 mm. long, cupshaped and abruptly narrowed into a slender pseudostalk c. 3 mm. long, longitudinally ridged when dry, mouth with 4 wide shallow thin subpersistent lobes; *petals* falling in a calyptra, only partially separable, gland dotted; *stamens* variable in length, reaching c. 6.5 mm. long, filaments slender, terete, anthers small, connective gland not conspicuous; *style* much stouter than filaments, tapering to apex, c. 7 mm. long. *Fruit* unknown.

SINGAPORE: McRitchie Reservoir, *SFN* 33590 (Corner); Selitar, near Nee Soon village, *SFN* 37396 (Corner); Mandai road, *SFN* 37252 (Corner).

Known only from Singapore.

A tree 25–30 m. tall, slightly or prominently buttressed-fluted to c. 2 m. from ground; bark rufous brown, fissured or distinctly scaly flaky, inner bark deep purple. *Twigs* stout, terete, with smooth pale brown bark becoming scaly flaky and red brown. *Leaves* decussate, narrowly elliptic
to oblong elliptic, coriaceous, 6-11 cm. × 2-4.5 cm., dull green withering yellow, with upcurled margins and reflexed apex, drying pale brown to reddish brown above, dull pale brown to whitish brown below, apex acuminated and deflected sideways, base cuneate and long narrowed on to petiole; midrib sunk above, strongly raised and keeled below; primary nerves very fine, c. 20-25 pairs, raised on both surfaces, sometimes very obscure above, hardly or not distinguishable from secondaries below, reticulations slightly thickened and raised; intramarginal vein fine, c. 1 mm. from leaf margin; lower surface minutely black dotted; petiole 5-8 mm. long.

Inflorescences corymbose, terminal, not exceeding c. 8 cm. long and wide, much branched; flowers usually in threes or sometimes solitary at ends of branchlets, sessile or sometimes on pedicels 2-4 mm. long or the outer two flowers of the triads shortly pedicelled and the centre flower sessile; buds c. 1.3-1.4 cm. long including pseudostalk; calyx pale green, gland dotted, tube cyathiform, c. 6 mm. across mouth, tapering into a ridged pseudostalk c. 4-5 mm. long, mouth truncate or wavy or occasionally with exceedingly obscure teeth; after anthesis the calyx funnel shaped, c. 7 mm. across mouth; petals calyptrate, white; stamens numerous, filaments white with green bases, 1-2.5 cm. long, anthers c. 0.5 mm. long and 0.4 mm. broad, connective gland distinct; style a little shorter than stamens; ovary 2-celled, multiovulate.

Fruit more or less globular, c. 1.5 cm. diam., smooth, crowned by the very conspicuous undulating calyx rim c. 2 mm. high; pericarp 2-3 mm. thick; cotyledons nearly equal, inner faces nearly plane, attached to the hypocotyle by short broad stalks.

This species does not closely resemble any other, and is distinguished by the rather narrow long acuminate leaves and the copious corymbose inflorescences with rather large, long, narrow flowers and the almost truncate calyx mouth.

101. Eugenia taipingensis Henderson in Gardens' Bulletin, Singapore, XI, 327, fig. 14 (1947). (Fig. 37c).

Perak: Taiping, plains, Wray 2703, within 100 feet, Kunstler 8379.

Known only from these collections.

A low tree with spreading branches, 4.5-6 m. tall, stem 8-13 cm. diam. Twigs smooth, terete, bark brown to pale whitey grey or brownish white. Leaves coriaceous, broadly ovate or elliptic, sometimes tending to be obovate, up to c. 6.5 cm. × 3.5 cm., apex abruptly acuminated, acumen c. 1 cm. long, base abruptly narrowed and decurrent on petiole, drying dull brown or blackish brown and minutely punctate

Vol. XII. (1949).
above, usually reddish brown below, very minutely black gland dotted or not; midrib sunk above, raised below and slightly pustulate near base; primary nerves about 10 pairs, very slender and almost indistinguishable from secondaries and reticulations, intramarginal nerve slender c. 1 mm. from leaf margin; petiole 2–5 mm. long.

Panicles terminal, up to c. 6 cm. long and 4 cm. across, branchlets spreading, slender, angled, with brownish or greyish striate bark; flowers crowded at ends of ultimate branchlets; calyx tube in bud c. 4 mm. long and 2–2.5 mm. across mouth, narrowly campanulate, quickly contracted some way below mouth, then tapering gradually into a pseudostalk c. 2 mm. long; mouth truncate or wavy or with very obscure shallow lobes; petals probably calyptrate, more or less agglutinated, conspicuously gland dotted; stamens numerous, filaments slender, up to c. 6 mm. long, anthers c. 0.4–0.5 mm. long, connective gland conspicuous; style much stouter than filaments, c. 5 mm. long. Fruit unknown.

This species was included under *E. oleina* by King and presumably also by Ridley, but although it has a superficial resemblance to that species it is very distinct in its broader and more acuminate leaves with the nervation raised above, and in its truncate calyx mouth.

102. **Eugenia nigricans** King, Mat. F.M.P., No. 12, 114 (1901); Ridl., F.M.P., I, 751. *Syzygium nigricans* (King) Merr. & Perry in Mem. Amer. Acad. Arts & Sci., XVIII, 3, 194 (1939). (Fig. 37d).

TRENGGANU: Gunong Padang, 4,000 feet, SFN 33903 (Moysey & Kiah), specimens in young fruit with leaves larger and thicker than the type, and referred here with some doubt. They may represent a mountain variety.

KEMAMAN: Bukit Kajang, Corner s.n., leaf specimens with leaves larger than the type, and referred here with a little doubt.

PENANG: sine loc., Curtis 976; between Balik Pulau and Pulau Betong, Curtis 937 in part.

PERAK: Waterfall hill, Taiping, 1,000 feet, Wray 2221 (type collection); sine loc., Scortechini 203.

MALACCA: sine loc., Griffith s.n.

NEGRI SEMBILAN: Bukit Tangga, SFN 11828 (Nur).

PAHANG: Sungai Endau, Forest Dept. FMS 6766; Kuantan, Forest Dept. FMS 8128.

JOHORE: Pinerong, Cantley s.n.; Jason Bay, SFN 28497, 28522 (Corner).

SINGAPORE: Bukit Timah, SFN 34988 (Corner), SFN 36128, 36531, 37015 (Ngadiman).

Distrib: Borneo.

A tall massive tree, trunk slightly fluted at base or with narrow low buttresses, sometimes stilt rooted; bark smooth, entire or slightly longitudinally fissured and flaky,
Fig. 37. a, b, E. pallidula; c, E. taipingensis; d, E. nigricans, upper surface.
not papery or rugose, scaling in small thin irregular pieces, leaving areas of entire more or less pustulate bark, pale grey or pinkish grey to pale rufous fawn; inner bark reddish pink, pinkish brown or deep purple brown, thick, more or less fibrous, with sticky pale sap, sapwood thin, pale, heartwood red brown. Twigs slender, terete, when dry with brown smooth or flaky bark. Leaves coriaceous, narrowly elliptic to elliptic oblong or oblong, apex rather shortly and abruptly acuminate, base cuneate, from c. 6–12 cm. long and 3.5–5.5 cm. broad, upper surface more or less shining when dry and dark olivaceous or brownish, minutely punctate or pustulate, lower surface dull, tinged reddish or brownish, sometimes minutely pustulate; midrib impressed above, elevate below; primary nerves very numerous and close together, running nearly straight to an intramarginal nerve close to leaf margin, raised and fine on both surfaces, but more distinct above, joined by close reticulations which are almost as distinct as primaries above but faint below; petiole up to c. 1 cm. long.

Panicles terminal and axillary, not more than about half length of leaves, rather densely flowered, branches and branchlets slender, 4-angled or compressed, bracts and bracteoles minute, broad, subpersistent; flowers white, sessile in threes or clusters at branchlet ends, buds clavate c. 5 mm. long; calyx funnel shaped or narrowly campanulate, slightly ridged, c. 4–4.5 mm. long, c. 2.5 mm. across mouth, narrowed into a rather slender pseudostalk c. 2 mm. long; mouth with 5 very shallow very obscure deciduous lobes; petals calyptrate, the outer one partially free; stamens numerous, filaments slender, up to c. 6–7 mm. long, anthers ovate or ovate oblong, c. 0.4 mm. long, connective gland conspicuous; style stouter than filaments, c. 3.5 mm. long; ovary 2-celled.

Characterised by the fine raised close reticulation on the upper surface of the leaves.

Not rare in lowland forest from Langkawi to Malacca and Pahang. A collection of Cantley's from Singapore appears to be wrongly localised.

Distrib: Siam, Sumatra, Borneo, Java.

A tree. Twigs slender, terete, bark drying brownish or greyish, smooth. Leaves coriaceous, oblong elliptic or oblong lanceolate or oblong or elliptic, apex acute or shortly acuminate, base cuneate, from c. 8 cm. × 3 cm. to 18 cm. × 7 cm., both surfaces brown or reddish brown when dry, the upper sometimes blackish and minutely punctate, the lower paler; midrib impressed above, elevate below; primary nerves 15–25 pairs, 4–10 mm. apart, spreading and curving up to an intramarginal nerve 1–3 mm. from leaf margin, slightly raised and indistinct above, raised and slender below, usually distinct, secondaries and reticulations less distinct than primaries; petiole usually not more than c. 5 mm. long, occasionally c. 1 cm.

Panicles terminal and axillary, often clustered, variable in length from c. 3 cm. to c. 7 cm., the longer ones with a few slender branches, the shorter ones sometimes rather densely flowered; flowers white, sessile, in threes or groups of several at branchlet ends, bracts and bracteoles minute, triangular acute, subpersistent; buds clavate; calyx funnel shaped, c. 6 mm. long and 3 mm. across mouth, finely rugulose gland dotted, rather gradually contracted into a pseudostalk c. 2–3 mm. long, mouth truncate or undulate with a thin margin; petals falling in a gland dotted calytra c. 3 mm. diam.; stamens numerous, filaments slender, subulate, from 2–6 mm. long, anthers ovate oblong, 0.5–0.7 mm. long, connective gland conspicuous; style much stouter than filaments, c. 6 mm. long; ovary 2-celled.

Fruit depressed globose or transversely oblong globose, c. 2 cm. across, finely rugulose papillate when dry, apical umbilicus very shallow, c. 4 mm. diam., bearing the very short undulate calyx rim; pericarp thin; cotyledons side

Vol. XII. (1949).
side, nearly equal, testa rather thick, adhering to the rugose cotyledon surfaces; inner faces somewhat concave, attached to hypocotyl near their centres by short broad stalks.

When Craib made a new combination for this plant, it appears probable that he followed King’s reduction of *Syzygium euneuron* Miq. without seeing Miquel’s plant. I have examined a duplicate of Miquel’s type from Leiden and consider it to be very distinct from our plant in the distinctly 4-angled and very narrowly winged uppermost twigs; in the impressed primary nerves above, which are much more prominent below than in *E. cerasiformis*, and are more widely spaced and more distinct from the secondaries; in the intramarginal nerve further from the leaf margin; and in the more caudate acuminate leaf apex.

Myrtus cerasiformis Bl. was reduced (as *Jambosa cerasiformis* Hassk.) to *E. lineata* Duthie (*E. longiflora* F. Vill.) by Koorders & Valeton, but an examination of the type of Blume’s plant, which is in fruit, shows very clearly that this reduction is erroneous. Although Blume’s specimen has no flowers it corresponds so closely in all other points with our plant that I have no doubt that it is the same.

I have been able to examine long series of specimens of *E. jamboloides* K. & V., *E. javensis* K. & V., and *E. Zippeliana* K. & V., and have come to the conclusion that they vary from *E. cerasiformis* only in such relatively minor points as the colour of the bark of the twigs and the length and modes of branching of the inflorescence.

104. **Eugenia conglomerata** Duthie in Hook. fil., F.B.I., II, 497, (1878); King, Mat. F.M.P., No. 12, 101; Ridl., F.M.P., I, 742. (Fig. 38b).

Selangor: Sungai Pelek, Sepang, *Denny* 56, 61; Serdang Experimental Plantation, cultivated, Corner s.n.

Malacca: sine loc., *Maingay* K.D. 715 (type collection), Alwins s.n., 422; Gunong Ledang, Ridley s.n.

Singapore: Botanic Gardens, Ridley 5073, 10836, Gardens No. M 1502 (Nur); sine loc., Cantley s.n.

Distrib.: Endemic.

Tall massive tree with steep rounded narrow buttresses; bark slightly fissured, somewhat flaky and scaling in small rectangular pieces, reddish brown to warm brown; inner bark pinkish brown or fawn pink, rather thick, more or less fibrous; wood pale. Youngest twigs more or less 4-angled with dark brown bark when dry, older twigs terete with greyish or brownish smooth. *Leaves* coriaceous, oblanceolate to narrowly obovate, apex subacute or blunt, base long narrowed, from c. 5 cm. × 2 cm. to 10 cm. × 5-5 cm., but usually c. 7-8 cm. × 3-3.5 cm., upper surface

Gardens Bulletin, S.
Fig. 38. a, *E. cerasiformis*; b, *E. conglomerata*; c, *E. leptostemon*.

shining, drying blackish brown, finely rugose, lower surface dull, liver brown, closely and minutely glandular pustulate; midrib slightly elevate or flat above, elevate below and keeled or longitudinally wrinkled; primary nerves c. 8–12 pairs, spreading and curving up to a very obscure intramarginal nerve 2–3 mm. from the recurved leaf margin, raised on both surfaces, usually rather thick and distinct above, very fine and faint or almost invisible below, secondaries and reticulations almost or quite invisible; petiole up to c. 1 cm. long, the leaf blade sometimes decurrent upon it.

Inflorescences of short fascicled spikes from small tubercles on the older twigs below the leaves, up to c. 1 cm. long, the rachis 4-angled, the flowers crowded at the apices of the spikes with one or two lower down, sessile; calyx red to purple, petals and stamens white; bracts and bracteoles persistent, triangular subacute, less than 0.5 mm. long; buds broadly obconic, c. 2.5–3 mm. long; calyx broadly funnel shaped or somewhat campanulate, c. 2–2.5 mm. long, and as much across mouth; lobes 4, persistent, broad, rounded, or subacute, c. 1.5 mm. across and 1 mm. tall; petals 4, free, broadly ovate rounded, or orbicular, c. 16–2 mm. across and 1–1.5 mm. tall, thin, sparsely gland dotted; stamens numerous, filaments subulate, from almost none to c. 2.5 mm. long, anthers oblong, 0.3–0.4 mm. long, connective gland small; style stout, 4-angled, less than 1 mm. long; ovary 2-celled, with several ovules in each cell.

Fruit depressed globose, sometimes more or less globose, up to c. 1 cm. long and 1.25 cm. across, shining dark purplish red when ripe, apical calyx rim not prominent, the umbilicus shallow, c. 3 mm. diam., with the 4 fleshy incurved calyx lobes and remains of style and stamens; pericarp juicy pulpy, c. 3 mm. thick, deep red pink, slightly acid and astringent, stripping easily from the seed and leaving testa on cotyledons; seed 1, much depressed globose, c. 5 mm. high and 7.5 mm. across, testa very thin, brown, papery fibrous; cotyledons side by side, stalked, pale green, finely gland dotted, inner faces deeply folded to accommodate the large terete truncate pale green gland dotted hypocotyle which reaches outer surface of cotyledons, point of attachment of cotyledons nearly central, with very broad short stalks, plumule hidden under fold; germination epigeal. When the cotyledons begin to move apart on germination, the broad stalks curving round to meet the hypocotyle are clearly seen and the structure is like that of E. malaccensis in miniature.

A distinct species in its large size, the rather small oblanceolate blunt faintly nerved leaves and the very short crowded spikes of small flowers from below the leaves.

Gardens Bulletin, S.
E. conglomerata Duthie var. paniculata var. nov.

A typa inflorescentiis paniculatis ad 4 cm. longis differt.

Johore: Sungai Kayu Ara, Mawai-Jemaluang road, on hillock in Dryobalanops forest, SFN 29368 (Corner), TYPE collection, holotype in Herb. Singapore.

The inflorescences of the typical form are, at their longest, in fruit, c. 1-2 cm. and spicate. The inflorescences of the variety have one or two pairs of branchlets up to c. 1-5 cm. long, those and the peduncle stout, ridged and angled. Only one collection of the variety is known, a fallen branch from a tree which the collector notes as evidently fairly big.

Common in lowland forest from Kedah to Singapore, occasionally in hill forest. Not recorded from Penang.

Distrib: Siam, Bangka, Borneo.

A small slender tree, or up to c. 18 m. tall, trunk cylindric at base or slightly buttressed; bark smooth, entire, slightly pustulate, light grey, slightly pinkish fawn; inner bark pinkish fawn. Youngest twigs obtusely 4-angled and grooved, drying smooth and reddish brown, older twigs terete or slightly angled, bark pale grey or pale brown, wrinkled or somewhat flaky. Leaves coriaceous, elliptic, elliptic oblong or obovate elliptic, apex shortly and bluntly acuminate, base cuneate, from c. 9–24 cm. long and 3-5-12 cm. broad, usually c. 12–18 cm. × 6-9 cm., upper surface drying dark brown to blackish brown, shining, minutely punctate, lower surface reddish brown, dull, with minute raised dark gland dots; midrib broad and flat above or slightly raised and channelled, elevate below and keeled; primary nerves 12–20 pairs, 1–2 cm. apart, obliquely ascending to a prominent shallowly looped intramarginal nerve 3–6 mm. from leaf margin, finely channelled above, elevate and very distinct below, sometimes broad and dark coloured, the few lax reticulations faint; petiole up to c. 1 cm. long, usually above 5 mm.
Inflorescences from small tubercles on the twigs below the leaves, very occasionally axillary or terminal, solitary or several together, subracemose, from c. 1.5–5 cm. long, or fascicled, or occasionally paniculate, the rachis, and branches when present, slender; flowers white, sessile, usually 5 at the distal end of the rachis, with 1 or 2 pairs lower down, or in groups of three at ends of branches; calyx 6–8 mm. long; and about 5–6 mm. across mouth, sub-turbinate, rather abruptly contracted below lobes and narrowed to a slender pseudostalk; lobes 4, persistent, gland dotted, slightly unequal, broadly ovate rounded, the two outer rather thick, c. 4 mm. across and 2 mm. tall, the inner with thin margins, c. 3 mm. tall; the calyx eventually opening out into a flat disc; petals 4, free, spreading, orbicular, gland dotted, 5–6 mm. diam.; stamens numerous, filaments slender, subulate, reaching nearly 1 cm. long, anthers ovate orbicular, 0.2–0.3 mm. long; style much stouter than filaments, subulate, c. 7 mm. long; ovary 2-celled.

Fruit ovoid globose, c. 1.5 cm. long, vertically ridged or corrugate, apical umbilicus c. 4 mm. diam., fringed by the very short calyx rim and the 4 hardly enlarged calyx lobes; pericarp thin and leathery (in dried fruits); seed 1, oblong globose, c. 12 cm. long, testa leathery, adhering closely to the rugose surface of the cotyledons; cotyledons nearly equal, side by side, inner faces gland dotted, excavate, attached by very broad, very short stalks to the large gland dotted hypocotyl which lies in a fold of the cotyledon faces and reaches the periphery of the seed.

This species is distinguished by the spaced and distinct obliquely ascending primary nerves of the leaf, the short subracemose inflorescences usually from below the leaves and the calyx opening out after anthesis into an almost flat disc.

Common in the lowlands, especially in the north of Malaya, in villages and ricefields. Not uncommon in the freshwater swamp forest of S.E. Johore, and in Singapore.

A tree reaching c. 25 m. tall, trunk cylindric or slightly fluted and buttressed at base; bark of older trees deeply cracked or almost fissured vertically, with finer crevices

Gardens Bulletin, S.
vertically and horizontally, sometimes scaling slightly, surface between cracks smooth or rugulose, pale whitey grey or greyish buff; of younger trees smooth and entire, or finely creviced longitudinally, sometimes slightly pimply with inconspicuous lenticels, scaling in rather thick pieces or not, whitey grey or light pinkish grey; inner bark pinkish brown; wood pale, flesh colour or yellowish, turning fuliginous on exposure. Twigs terete, bark smooth, drying whitey grey or yellowish grey, the youngest parts sometimes pale brown. Leaves thickly coriaceous, oblong elliptic or narrowly elliptic, occasionally somewhat obovate, apex blunt or subacute or shortly and broadly apiculate, base cuneate, from c. 5–16 cm. long and 2:5–7 cm. broad, usually c. 7–11 cm. × 4–5 cm., upper surface dull, drying pale brown to blackish brown, closely and minutely punctate, lower surface paler; midrib impressed above, prominent below and often pubescent towards the petiole; primary nerves 6–10 pairs, usually c. 1 cm. apart, impressed above and usually faint, more or less raised below and fine, usually distinct, curving up to a faint or obscure intramarginal nerve 2–4 mm. from leaf margin; secondaries and reticulations usually very faint; petiole up to c. 1:5 cm. long, the leaf blade sometimes narrowly decurrent upon it.

Panicles terminal and axillary, occasionally from twigs below the leaves, often clustered, usually as long as or shorter than the leaves, occasionally overtopping them, on peduncles shorter than the leaves, branches few, distant, divaricate, trichotomous, slender and 4-angled or compressed; flowers with reddish calyx, yellowish stamens and petals, sessile in threes at ends of the short ultimate branchlets; bracts and bracteoles short and broad, caducous or subpersistent; calyx after anthesis funnel shaped or slightly campanulate, finally somewhat urn shaped, c. 3 mm. long, c. 2:5 mm. across mouth, tube finely gland dotted, slightly narrowed to base, mouth with 4 broad very shallow rounded rather obscure lobes; petals calytrate; stamens numerous, filaments subulate, glandular, up to c. 2 mm. long, anthers oblong or ovate oblong, c. 0:5–0:7 mm. long, connective gland conspicuous; style stouter than filaments, c. 1 mm. long; ovary 2-celled, multiovulate.

Fruit depressed oblong globose, pink to almost black, c. 1:5 cm. diam., 1:2 cm. high, apex deeply and narrowly excavate with minute remains of calyx rim; pericarp pulpy fleshy, with fibrous strands, 3–4 mm. thick; seed 1, inner cotyledon faces gland dotted, ridged, attached near their centres by broad short stalks to the rather large hypocotyle.

The seeds are nearly always infected with the larvae of a species of phytophagous Braconidae (fide H. M. Vol. XII. (1949).
Pendlebury). The only uninfected seeds so far found out of many hundreds examined are those of Ridley's Perlis collection.

It seems probable that the correct name for this plant is *Eugenia borneensis* Miq., Anal. Bot. Ind., I, 24, t. 7 (1850). Our material agrees fairly well with Miquel's description and plate, but certain differences as figured by Miquel, notably the free, not calyptrate petals and the more abruptly narrowed calyx tube, along with the fact that no material of Miquel's species has been available for comparison, make it advisable that the formal reduction should not be made until Miquel's type can be compared with our plant. An argument in favour of reduction is that Merrill and Perry (Mem. Amer. Acad. Arts & Sci., XVIII, 3, 190 (1839)) reduce *E. microcalyx* Duthie to *E. borneensis* Miq. apparently on the basis of Kunstler 10733 and Kunstler 10735, both named *E. microcalyx* by King, and on a later collection from the Malay Peninsula, the details of which are not given. Kunstler 10733 is *E. pseudosubtilis*. Kunstler 10735 I have not seen, but as noted below, King's determinations of *E. pseudosubtilis* and *E. microcalyx* were not always reliable. Typical *E. microcalyx* could hardly be reconciled with Miquel's description and figure of *E. borneensis*.

Ridley refers part of *E. pseudosubtilis* to *E. cinerea* Kurz. Kurz included Wall. Cat. 3576 in his species, but this is undoubtedly *E. pseudosubtilis* and not the Burmese plant. Craib, Fl. Siam. Enum., I, 634, selects the Burmese plant as the type of *E. cinerea* in spite of the fact that Kurz used Wallich's specific name and I have followed this procedure here. Merrill and Perry in Journ. Arn. Arb. XIX, 106, accept Ridley's disposition of *E. pseudosubtilis* var. *platyphylla*, but their remarks make me suspect that the Indo-Chinese plants which they refer to *E. cinerea* are really *E. pseudosubtilis*.

E. pseudosubtilis is closely allied to *E. microcalyx*, and although the typical forms of each are easily separable even on foliage characters alone, considerable difficulty may be found in placing correctly specimens which appear to combine the characters of *E. microcalyx* var. *irregularis* and of the broader leaved more strongly nervèd forms of *E. pseudosubtilis*. Judging from the annotations on sheets in Herb. Calcutta and Herb. Singapore, there was considerable confusion in King's mind over the identity of the two species, "microcalyx" having been substituted, in my opinion wrongly, for "pseudosubtilis" many times, even Kunstler 6946 and Ridley 4990, syntypes of *E. pseudosubtilis*, being treated in this manner.

Gardens Bulletin, S.
The main distinguishing points between the two species are—(1) the very pale bark of the twigs in *E. pseudosubtilis* compared with the dark bark of *E. microcalyx* (this character breaks down in *E. pseudosubtilis* var. *montana*); (2) the more coriaceous texture of the leaves in *E. pseudosubtilis*; (3) the generally longer inflorescences on longer peduncles in *E. microcalyx*; (4) the persistent bracteoles in *E. microcalyx*; (5) the smaller flowers of *E. microcalyx*; (6) the broad blunt calyx lobes of *E. pseudosubtilis* compared with the very small narrow acute lobes in *E. microcalyx*; (7) the dark red or almost black ripe fruit of *E. pseudosubtilis* compared with the white tinged pink fruit of *E. microcalyx*.

E. pseudosubtilis King, var. *montana* var. nov.

A typa foliis valde coriaceis plus minusve ovatis (ad 8-5 cm. longis et 5 cm. latis), nervis primariis subtus plus minusve prominentibus, apice obtuse acuminatis, cortice ramulorum fusco differt.

PAHANG: "Telom", Ridley 18901 (inflorescences more copious and longer than in other specimens quoted here); 47th mile, Telom road, SFN 31258 (Holttum), TYPE collection, holotype in Herb. Singapore; Cameron Highlands, 3,700 feet, SFN 32734 (Nur); Fraser Hill, Forest Dept. FMS 7796.

This group has been kept separate because it may be found to represent a distinct species closely allied to *E. pseudosubtilis* and *E. microcalyx*.

King’s varieties *platyphylla* and *subacuminata* are not worth keeping up.

107. *Eugenia microcalyx* Duthie in Hook. fil., F.B.I., II, 493 (1878); King, Mat. F.M.P., No. 12, 124, incl. var. *ovata* pro parte; Ridl., F.M.P., I, 745. (Fig. 39a).

An endemic species not uncommon in lowland forest and secondary growth from Penang to Singapore on the west side of the Main Range.

A tree up to c. 15-16 m. tall. Youngest twigs somewhat 4-angled with smooth bark drying dark brown, older twigs terete with paler brown bark. Leaves coriaceous, lanceolate or oblong lanceolate to oblanceolate or obovate, apex subacuminate or blunt, long narrowed to base, from c. 5 cm. × 2 cm. up to c. 14 cm. × 7 cm., usually about 8 cm. × 3 cm., upper surface drying blackish brown to black, slightly polished, minutely and closely punctate, often appearing minutely rugulose, lower surface red brown with minute concolorous or darker pustulations; midrib impressed above, elevate below and rather obscurely pustulate; primary nerves about 10 pairs, more or less impressed and

Vol. XII. (1949).
Fig. 39. a, *E. microcalyx*; b, *E. microcalyx* var. *irregularis*; c. *E. pseudosubtilis*; d, *E. Kunstleri*.

Gardens Bulletin, S.
faint above, raised and fine below, distinct or indistinct, slightly ascending and running nearly straight to a distinct or indistinct intramarginal nerve 2–4 mm. from the strongly and irregularly recurved leaf margin; petiole 0.5–1 cm. long, the leaf blade more or less decurrent upon it.

Panicles terminal and axillary, sometimes clustered, usually exceeding the leaves, on peduncles as long as or longer than the leaves, sometimes sessile, reaching 12–14 cm. long, branches and branchlets rather lax, spreading, slender, angled or compressed, with brownish and obscurely pubescent striate bark; bracts and bracteoles minute, triangular acute, persistent; flowers yellowish white in threes or clusters at branchlet ends, sessile; calyx finely glandular pubescent, subcylindrical, a little over 2 mm. long and c. 1.2 mm. across, mouth very slightly tapered at base; mouth with 4 distant very short obscure triangular acute persistent lobes; petals falling in a calyptra, but not or very slightly agglutinated, orbicular, sparsely pellucidly gland dotted, c. 1.2–1.4 mm. diam.; stamens less than 20, filaments rather stout, flattened below, subulate above, up to c. 1 mm. long, anthers ovate c. 0.2–0.3 mm. long, connective gland inconspicuous; style narrowly conical c. 0.5 mm. long; ovary 2-celled.

Fruit waxy white tinged with red, finely rugose when dry, globose or depressed globose, c. 4–5 mm. diam., apical umbilicus very shallow, hardly excavate, c. 2 mm. diam., fringed by the slightly enlarged calyx lobes; seed 1, more or less globose, cotyledons nearly equal, side by side, inner faces gland dotted, nearly plane or somewhat concave, attached to hypocotyle near periphery, the plumule and radicle sunk in a fold of one cotyledon face.

See notes on *E. pseudosubtilis*.

E. microcalyx Duthie var. *irregularis* (Craib) var. nov. (Fig. 39b).

Negri Sembilan: Seremban, Corner s.n.
Singapore: Bukit Mandai, Ridley 10410; Economic Gardens, Ridley 12482; Reservoir Jungle, SFN 29495, 30995, 30996 (Corner); Botanic Gardens, SFN 36530 (Kiah).

Distrib: Siam, Indo-China.

A small tree; bark more or less smooth, finely shortly irregularly creviced or occasionally with slight fissures, scaling in small irregular pieces, pale pinkish grey to whitish grey, a very thin inconspicuous green layer.

immediately below surface; inner bark thick and fibrous with copious watery sap, pale pinkish buff, darkening rapidly on exposure; wood almost white. Young twigs terete, rather stout, green in life, drying reddish brown. Leaves elliptic or oblong elliptic or obovate, apex shortly and abruptly acuminate, acumen blunt or acute, base narrowed or cuneate, up to c. 20 cm. × 9.5 cm., upper surface rather dark shining green and more or less bullate in life, dark brown when dry, minutely black dotted, lower surface paler green, drying brown and minutely black dotted; midrib impressed above, prominent and rounded below; primary nerves up to c. 16 pairs, impressed above, prominent below, running nearly straight or curving gently up to a conspicuous intramarginal nerve c. 5 mm. from leaf margin; secondaries few, fine, reticulations lax, hardly visible; petiole stout, up to c. 1 cm. long, black when dry.

Panicles terminal, branched from base, up to c. 16 cm. long, branches distant, the lower ones ascending, the upper nearly horizontal and shorter, green in life and somewhat angled or compressed, brownish and striate when dry; flowers sessile or sometimes on very short stout pedicels, in twos or threes, or occasionally subcapitate at the ends of the ultimate branchlets, bracts and bracteoles minute, persistent, triangular acute, 3 at base of each flower; calyx yellowish shading to greenish at base, gland dotted, obovate, without pseudostalk, c. 3 mm. long, lobes 5, very small and distant, broadly triangular acute, less than 0.5 mm. tall; petals 5, white, falling as a calyptra but not agglutinated, more or less orbicular, c. 1.5-2 mm. diam., with sparse yellow gland dots; stamens c. 25, from 0.5-2 mm. long, filaments strap-shaped at base, subulate above, anthers small, connective gland yellowish; style narrowly conical, c. 1 mm. tall; ovary 2-celled.

Fruit pink when ripe with inconspicuous white dots, or white on one side, more or less globose, oblong globose or depressed globose, c. 4-5 mm. diam., 3.5-4 mm. tall, apical umbilicus shallow and rather wide, c. 1.5-2 mm. diam., bearing the hardly enlarged incurved calyx lobes and remains of stamens and style base; pericarp juicy, white, rather thick, nearly 1 mm. in places; seed 1, more or less reniform or oblong, c. 3-5 mm. long, cotyledons superposed, outer surface inconspicuously gland dotted, more or less equal, inner faces oblique, nearly plane, attached to hypocotyle at periphery, the small radicle and plumule sunk in a slight fold in the edge of one cotyledon.

The larger and broader leaves with more pronounced venation distinguish this variety from the typical form.
108. **Eugenia myriantha** King, Mat. F.M.P., No. 12, 125 (1901); Ridl., F.M.P., I, 745. (Fig. 40f).

PERAK: sine loc., Scortechini 337 (type collection).

Distrib: Endemic.

A tall tree. **Twigs** terete. **Leaves** very coriaceous, elliptic lanceolate to oblanceolate, apex subacute, base narrowed, up to c. 4.5 cm. × 2 cm., upper surface polished, drying pale brown, punctate, lower surface dull, darker brown, subglaucous; midrib impressed above, elevate below; **primary nerves** 3 or 4 pairs, ascending, distant, very faint and obscure on both surfaces, reticulation invisible; petiole up to c. 8 mm. long.

Panicles terminal or from upper leaf axils, numerous, pedunculate, up to c. 7 cm. long, the branches numerous and spreading, rather slender, angled; **flowers** sessile in clusters at ends of the short quadrangular branchlets, subtended by minute, subpersistent broad bracteoles; **calyx** cylindric, c. 2 mm. long.

Known only from one collection. This species approaches some forms of *E. pseudosubtilis* and may not be more than a variety of that variable species. The leaves, however, are much smaller and thicker than in any form of *E. pseudosubtilis* that I have seen, the upper surface pitted and the nerves obscure on both surfaces.

There is no indication of the locality on the label, but the appearance of the specimens suggests that it is a mountain or ridge top plant, although a note, ? in Scortechini's hand, pinned to one sheet in Herb. Calcutta, describes it as a tall tree.

KEMAMAN: Bukit Kajang, 500 feet, SFN 30322, 30420, 30492 (Corner).

PENANG: sine loc., Curtis 179 (syntype).

PERAK: Larut, up to 800 feet, Kunstler 3310 (syntype), 200-500 feet, Kunstler 3680 (syntype).

JOHORE: 5½ mile, Kota Tinggi-Mawai road, SFN 29301 (Corner); Sungai Sedili, SFN 36920 (Corner).

SINGAPORE: Botanic Gardens, Ridley 6418; Mandai road, SFN 37725 (Kiah).

Distrib: Borneo.

A tree reaching c. 24-25 m. tall, trunk cylindric or slightly fluted at base; bark distinctly though thinly papery flaky, slightly pustulate with scattered lenticels, pallid rufous fawn or orange rufous; inner bark rather thick, pale pinkish or brownish buff or yellowish brownish, turning Vol. XII. (1949).
mauvish or brownish on exposure; wood pallid buff. *Twigs* slender, terete, bark smooth and somewhat polished, drying pale, the youngest shoots obscurely quadrangular with brown pubescent bark. *Leaves* thinly coriaceous, oblanceolate or elliptic lanceolate to ovate lanceolate or narrowly elliptic, apex acuminate, base cuneate or long narrowed, from c. 6.5–19 cm. long and 3–6 cm. broad, upper surface dull, drying brown to blackish brown, very minutely and closely black dotted, punctuate or obscurely pubescent, lower surface brown or reddish brown, minutely glandular pubescent; midrib narrowly and deeply impressed above, prominent below, rugose pubescent; **primary nerves** 8–12 pairs, c. 1–1.5 cm. apart, more or less impressed above and rather faint, bold below, more or less pubescent, nearly straight or curving up to a bold looped intramarginal nerve c. 4–5 mm. from leaf margin, with a much fainter series of loops close to the margin; secondaries and lax reticulations usually invisible above, very fine and faint below; petiole up to c. 1.5 cm. long, rather slender, rugose when dry, deeply channelled above.

Panicles terminal or from upper leaf axils, often clustered, shortly pedunculate, reaching c. 12 cm. long but usually much shorter than the leaves, peduncle, rachis and the many spreading branches slender, 4-angled, drying brown and minutely pubescent; **flowers** sessile or occasionally on very short stout pedicels, in threes at ends of the short ultimate branchlets; calyx green, petals and filaments white; calyx funnel shaped, quadrangular, c. 3 mm. long and 2 mm. across mouth, narrowed at base or contracted rather suddenly into a pseudostalk varying from less than 0.5 mm. to c. 1 mm. long; mouth with 4 obscure broad rounded subpersistent lobes less than 0.4 mm. tall; petals 4, free, orbicular, 1.5–2 mm. diam., or falling in a calyptra, either completely agglutinated or partially so; **stamens** about 20, filaments rather stout, flattened, less than 1 mm. long, anthers elliptic, c. 0.3 mm. long, connective gland small; **style** rather slender, c. 0.7 mm. long; **ovary** 2-celled.

Fruit ovoid or obovoid, c. 1.5 cm. long, 1.25 cm. across, smooth, somewhat narrowed at base, apical umbilicus very shallow, c. 3 mm. diam., fringed by the very short calyx rim; pericarp thin and tough, seed with large blunt conspicuous hypocotyle reaching periphery.

E. albidiramea Merr. is known from fruiting specimens only, but although the fruit of the type (*Elmer 21762*) is larger and more deeply wrinkled than in any Malayan collection, that of *Elmer 21518*, cited in the original description, corresponds exactly to several of our collections,

Gardens Bulletin, S.
and two flowering collections which match the type of *E. Kunstleri* very closely have been made in Borneo. They are *SFN 36098* (Daud & Tachun) from Gunong Gading, Sarawak, and *SFN 26869* (Carr) from Tenompok, Mt. Kinabalu.

This species is allied to *E. pustulata* but differs in the less oblong leaves, the more slender inflorescence branches and the smaller flowers.

Widely distributed from Langkawi and Kelantan to Singapore, in lowland forest and secondary growth and in villages, commonest in the south of the Peninsula.
Dist: Burma, Siam, Indo-China, Sumatra, Borneo, Java.

A rather slender tree up to c. 24 m. tall; bark creviced into small regular inconspicuous rectangular pieces, not or slightly flaky, rather thick, pale grey or whitish grey; inner bark thick, pink, turning mauvish on exposure; wood pale. *Twigs* terete, drying reddish brown or greyish brown, bark somewhat flaky. *Leaves* thinly coriaceous, narrowly elliptic, lanceolate, oblong elliptic or oblong ob lanceolate, usually shortly and bluntly acuminate, sometimes caudate acuminate, base cuneate, from c. 7−16 cm. long and 2.5−7 cm. broad; upper surface drying dull or slightly shiny, dark brown to almost black, minutely punctate, dull below and brown or reddish brown, closely pellucid dotted in life, minutely black dotted or pustulate when dry; midrib impressed above, prominent below; *primary nerves* c. 7−11 pairs, 0.5−1 cm. or more apart, usually faint above, slightly prominent below and usually quite distinct, spreading or obliquely ascending, nearly straight or slightly curved to an intramarginal nerve 2−4 mm. from leaf margin; secondaries and reticulations usually faint or obscure; *petiole* usually c. 0.5 cm. long, rarely as much as 1 cm.

Panicles usually from the young twigs below the leaves, sometimes axillary, numerous, up to c. 5 cm. long but occasionally as much as 10 cm. long, peduncled or branched.

Vol. XII. (1949).
from near base, the rachis and short divaricate branches slender, 4-angled or compressed, bracts and bracteoles minute, subpersistent, triangular acute; flowers faintly fragrant, calyx greenish, petals and stamens white, sessile, usually in threes at the ends of the branches or of the short branchlets; calyx campanulate, narrowed into a short pseudostalk, tube c. 2 mm. long; lobes 4, green, broadly ovate rounded, c. 1-5 mm. tall, the two outer thinner and slightly larger than the two inner, conspicuously pellucid dotted; petals 4, free, thin, broadly ovate rotund, conspicuously pellucid dotted, c. 3 mm. across and 2-5 mm. tall, the two outer ones often retuse, quickly deciduous; stamens numerous, filaments subulate, gland dotted, up to c. 4 mm. long, anthers oblong ovate, c. 0-4 mm. long, connective gland small; style terete, narrowly conic, apex truncate, c. 2 mm. long; ovary 2-celled, multiovulate. After the petals fall the calyx opens out into a flat pinkish disc and the calyx lobes shrivel and turn pink.

Fruit green when full grown, ripening deep pink or dull dark scarlet to purple black, globose to depressed globose, c. 1-2 cm. diam., apical umbilicus shallow, 3-4 mm. diam., bearing on its margin the 4 enlarged persistent fleshy calyx lobes; pericarp c. 2 mm. thick, juicy and pulpy, whitish tinged pink, faintly sweet; seed depressed globose, c. 7 mm. diam., testa pale brown, thin, adhering to the green rugose and gland dotted surface of the cotyledons; cotyledons side by side, inner faces green, gland dotted, nearly plane, sessile, attached to the stout hypocotyle near periphery. Germination hypogaeal.

E. polyantha Wight var. sessilis var. nov.
A typa floribus fasciculatis differt.

JOHORE: Sungai Kayu, in swampy forest, a tree 30–35 feet tall, SFN 32413 (Kiah), TYPE collection, holotype in Herb. Singapore.

At first sight this looks different from the typical form, but the foliage and flowers conform and the only difference is in the entire absence of inflorescence rachis.

111. Eugenia Koordersiana King, Mat. F.M.P., No. 12, 128 (1901); Ridl., F.M.P., I, 732. (Fig. 40b).

PERAK: Larut, within 100 feet, Kunstler 6208, 6385 (syntypes), 300–500 feet, Kunstler 6233 (syntype); Pondok Tanjong, Forest Dept. FMS 11792, 11798; sine loc., Scotterechini s.n., 257 (syntype).

SELANGOR: sine loc., Burn-Murdoch s.n.
Distrib: Endemic.

A tree up to c. 24 m. tall. Twigs terete, smooth, blackish brown when dry. Leaves coriaceous, narrowly elliptic or narrowly ovate elliptic, rarely ob lanceolate, apex

GARDENS BULLETIN, S.
Fig. 40. a, *E. polyantha*; b, *E. Koordersiana*; c, *E. orites*;
d, *E. alyzifolia*; e, *E. tetraptera* var. *pseudotetraptera*;
f, *E. myriantha*.

shortly and abruptly acuminate, base cuneate, from c. 5 cm. \(\times \) 2.5 cm. to 11 cm. \(\times \) 5 cm., both surfaces drying very dark brown to blackish brown, the lower slightly paler; midrib impressed above, prominent below; primary nerves 8–14 pairs, impressed above, fine but slightly elevate and distinct below, curving up to a shallowly looped intramarginal nerve c. 2–4 mm. from leaf margin, with a very faint series of loops nearer the margin, reticulations invisible above, very slightly raised and rather indistinct below; petiole from c. 5 mm. to nearly 1 cm. long.

Panicles terminal or occasionally from upper leaf axils, often clustered, pedunculate, usually longer than the leaves, corymbose, with several pairs of spreading or obliquely ascending branches up to c. 4 cm. long, they and the rachis sharply or obtusely 4-angled with dark smooth bark; flowers white, sessile, in threes or fives at ends of branches or of short rather slender branchlets, buds clavate; calyx campanulate, c. 4 mm. long and 2 mm. across mouth, somewhat 4-angled, rather gradually contracted into a short not well defined pseudostalk; lobes 4, deep, broad, and rounded, c. 2 mm. across and 1-2 mm. tall, caducous; petals 4, probably falling as a calyptra, but free, more or less orbicular, 3-5-4 mm. diam.; stamens numerous, filaments slender, up to 5-6 mm. long, anthers broadly elliptic, c. 0.3 mm. long, connective gland distinct; style stouter than filaments, c. 6 mm. long; ovary 2-celled.

Merrill and Perry point out that E. Koordersiana is very closely allied to Syzygium confertum (Korth.) Merr. & Perry. I have seen only Elmer 20126 of the specimens cited by Merrill and Perry and on the basis of this collection the two species are certainly very close, but E. Koordersiana has the primary nerves impressed above in all the material seen, and the branchlets have darker bark. It is better to keep the two species separate until E. Koordersiana is better known.

112. Eugenia orites Ridl., F.M.P., V (Suppl.), 308 (1925). (Fig. 40c).

Johore: Gunong Belumut, 3,000 feet, SFN 10722 (Holttum), type collection.

A tree. Twigs rather slender, terete, bark smooth, drying greyish or blackish brown. Leaves thickly coriaceous, elliptic lanceolate, apex narrowed and blunt, base cuneate, up to c. 5.5 cm. \(\times \) 2.5 cm., both surfaces drying reddish brown, dull, the upper minutely punctate; midrib narrowly impressed above, elevate below; primary nerves 4–7 pairs, 5–8 mm. apart, slightly raised and rather indistinct above, raised and distinct below, obliquely ascending

Gardens Bulletin, S.
to an intramarginal nerve 2–3 mm. from the more or less recurved leaf margin, reticulation obscure above, less distinct below than the primaries; petiole up to c. 7 mm. long, rather stout.

Cymes terminal, usually several together, or occasionally from upper leaf axils, up to c. 4 cm. long, rachis slender, angled and longitudinally wrinkled, drying dark, with three sessile flowers at its apex and often a pair lower down; _calyx_ campanulate, c. 8 mm. long and 6 mm. across mouth after anthesis, narrowed gradually to a pseudostalk 2–3 mm. long; lobes 4, thick with thin margins, suborbicular, c. 4 mm. diam., quickly deciduous and leaving a truncate-undulate calyx limb; _petals_ not seen; _stamens_ with very slender filaments, c. 6 mm. long, anthers ovate, c. 0·5–0·6 mm. long, connective gland rather conspicuous; _style_ much stouter than filaments, subulate, c. 6 mm. long; _ovary_ 2-celled.

A little known plant only once collected, but distinct in the small leaves, cymose inflorescence with few rather large flowers and the large, quickly deciduous calyx lobes.

SFN 28907 (Symington & Kiah) from Gunong Tapis, Kuantan, Pahang, alt. 4,600 feet, may be this, but it has much larger leaves, a shorter inflorescence and somewhat larger flowers with longer styles.

113. _Eugenia alyxifolia_ Ridl. in Journ. Bot., 296 (1924); F.M.P., V (Suppl.), 309 (1925). (Fig. 40d).

PAHANG: Fraser Hill, 4,000 feet, _SFN 11213 (Nur)_ , type collection.

A shrub. _Twigs_ slender, the youngest acutely 4-angled, bark drying dark, minutely rugulose pustulate, older twigs obtusely 4-angled or terete, bark drying smooth and yellowish or greyish. _Leaves_ coriaceous, lanceolate or narrowly oblong lanceolate, apex shortly and bluntly acuminate, base narrowed, up to c. 7 cm. × 2·5 cm.; upper surface drying blackish brown, closely pitted, lower surface paler, reddish brown, minutely rugulose pustulate; midrib impressed above, prominent below and keeled towards the petiole; _primary nerves_ 15–20 pairs, 3–5 mm. apart, almost invisible above, slightly raised and faint below, curving slightly to a very faint intramarginal nerve close to and hidden by the recurved leaf margin; petiole from 0·5–1 cm. long.

Panicles terminal, very short, c. 1 cm. long and 1·5–2 cm. across, sessile and branched from base, branches short, crowded, spreading, 4-angled; _flowers_ white, sessile in threes at the ends of very short branchlets, buds narrowly

Vol. XII. (1949).
obconic truncate, c. 3·5 mm. long; calyx after anthesis funnel shaped or somewhat campanulate, narrowed gradually to base, pseudostalk not sharply marked off; lobes 4, short, broad and rounded, obscure, incurved in bud; petals falling in a thick flat calyptra c. 1·5 mm. diam.; stamens less than 30, filaments stout, flattened below, reaching a little more than 1 mm. long, anthers ovate elliptic, c. 0·2 mm. long, connective gland distinct; style rather stout, narrowly conical, c. 1 mm. long; ovary 2-celled.

Collected only once, but distinct in the narrow leaves closely pitted above and in the very short inflorescences with very small flowers.

114. **Eugenia pseudocrenulata** nom. nov. (Fig. 41).

E. *crenulata* Duthie in Hook. fil., F.B.I., II, 490 (1878); King, Mat. F.M.P., No. 12, 91; Ridley, F.M.P., I, 751; non Willd. (1800).

Kemaman: Bukit Kajang, 500 feet, SFN 30456 (Corner), leaf specimens matching the type very closely.

Perak: Kledang Saiiong Forest Reserve, Forest Dept. FMS 33754, leaf specimens.

Malacca: sine loc., Maingay K.D. 739 (type collection).

Singapore: Selitar, Ridley 6232; Mandai road, SFN 28090 (Corner).

Distrib: Endemic.

A tree up to c. 12 m. tall, trunk slightly fluted and stilt rooted at base; bark entire, lenticellate or bumpy, or tesselately cracked in small patches, warm brown or greyish rufous; inner bark thick, deep pink brown or deep red brown, with dark brown gummy transversely elongate tannin cavities, very astringent; wood buff white. Twigs terete, bark drying brown and finely wrinkled. Leaves thickly coriaceous, stiff, dark green above and yellowish below in life, elliptic or elliptic rotund to narrowly oblong elliptic, apex rounded or somewhat narrowed with a short apiculus, or shortly and broadly acuminate, base cuneate, from c. 10–20 cm. long and 5–10 cm. broad, upper surface drying olivaceous to almost black, usually somewhat polished, often with large scattered gland pits, lower surface duller, reddish or dark brown, conspicuously dark gland dotted in life; midrib impressed above, prominent below and longitudinally wrinkled or keeled; primary nerves c. 30 pairs, usually c. 0·5 cm. apart, raised and distinct on both surfaces, more prominent below, obliquely ascending to a distinct intramarginal nerve 2–3 mm. from the shallowly and rather obscurely crenate leaf margin; secondaries and numerous reticulations almost as distinct on both surfaces as primaries; petiole stout, drying black and wrinkled, up to c. 2 cm. long.

Gardens Bulletin, S.
Fig. 41. *E. pseudoerenulata.*

Panicles terminal, up to c. 18 cm. long, on long peduncles, corymbose, trichotomous, peduncles and branches rather slender, obtusely 4-angled, bracts and bracteoles subpersistent, minute, narrowly triangular acute; flowers numerous, sessile in threes at the ends of the short ultimate branchlets; calyx after anthesis funnel shaped or narrowly campanulate, c. 4 mm. long and 3 mm. across mouth, tapered to base and rather suddenly contracted into a short pseudostalk c. 1 mm. long; lobes apparently 4, large and rounded, thin, quickly deciduous; petals falling in a thick gland dotted calyptra c. 3 mm. diam.; stamens numerous, filaments slender, c. 4 mm. long, anthers broadly ovate elliptic c. 0-4 mm. diam., connective gland distinct; style much stouter than filaments, c. 3-5 mm. long; ovary 2-celled, multiovulate.

Fruit ripening pallid watery white, depressed globose, c. 1 cm. long and 1-5-1-75 cm. across, apical umbilicus c. 2 mm. diam., the calyx rim not prominent; pericarp c. 2-3 mm. thick; seed c. 0-75 cm. long and 1 cm. wide, more or less conforming to shape of fruit but slightly compressed laterally; testa rather thin, leathery crustaceous, not membranous, adhering closely to cotyledons; cotyledons juxtaposed, nearly equal, their surfaces smooth with distant conspicuous dark gland dots, inner faces nearly plane, similarly gland dotted, attached to hypocotyle near their centres by very short broad stalks.

A little known species which seems to be very distinct in its large stiff crenate leaves with the venation raised on both surfaces, and in the large panicles of small flowers.

115. Eugenia tetraperta (Miq.) comb. nov. (Fig. 42).

Selangor: Sungai Buloh Forest Reserve, Ridley 13345, Forest Dept. FMS 2283, 27135, 29791.
Distrib: Sumatra (Penasa, Siak, Ridley 8987), Bangka (type).

A ?tree. Twigs slender, the youngest quadrangular with short coarse rufous glandular hairs, the angles with very conspicuous very wavy membranous wings, older twigs terete with pale flaky bark. Leaves thinly coriaceous, narrowly ovate or ovate oblong or ovate lanceolate, apex shortly and bluntly acuminate, base rounded and minutely cordate, 4 cm. × 2 cm. to 7 cm. × 3-5 cm.; upper surface drying dark brown, somewhat polished, minutely and closely punctate, lower surface reddish brown; midrib deeply impressed above, prominent below and conspicuously tuberculate, especially towards base; primary nerves c. 10

Gardens Bulletin, S.
pairs, impressed above and very distinct, prominent below, almost straight or curving slightly to a prominent shallowly looped intramarginal nerve 3–4 mm. from leaf margin, with a much less prominent series of loops c. 1 mm. from margin; reticulations invisible above, slightly raised and broad below, much less distinct than primaries; petiole very short, stout, closely wrinkled-tuberculate.

Flowers sessile, in terminal or axillary pseudo-umbellate sessile or almost sessile heads reaching c. 2 cm. diam., closely crowded and bracteate, the bracts not very conspicuous, subpersistent, linear oblong, keeled, c. 3 mm. long; calyx narrowly cylindric funnel shaped, 7–8 mm. long, c. 3 mm. across mouth, glaucous and longitudinally wrinkled, rather abruptly narrowed at base into a slender pseudostalk c. 2–3 mm. long; lobes 5, conspicuous, persistent, oblong ovate blunt, about 1 mm. across and 1 mm. tall; petals falling in a calyptera c. 2·5 mm. diam.; stamens numerous, filaments very slender, up to c. 6–7 mm. long, anthers ovate, 0·2–0·3 mm. long, connective gland large and conspicuous; style much stouter than filaments, c. 8 mm. long; ovary 2-celled.

E. tetraptera (Miq.) Henderson var. pseudotetraptera (King) var. nov. Eugenia pseudotetraptera King, Mat. F.M.P., No. 12, 109 (1901); Ridl., F.M.P., I, 739. (Fig. 40e).

Pahang: Cameron Highlands, 5,000 feet, SFN 18050 (Henderson & Whitty), Forest Dept. FMS 31018; Sungai Bertam, Cameron Highlands, Forest Dept. FMS 36265; Fraser Hill, Forest Dept. FMS 4513.

Johore: Gunong Panti, 1,600 feet, Ridley 4197, TYPE collection of E. pseudotetraptera King and of var. pseudotetraptra, holotype in Herb. Singapore; Sungai Kayu, Mawai-Jemaluang road, SFN 32018 (Corner); Sungai Sedili, Corner s.n.

Distrib: Karimom Islands (Ridley 348).

King remarks that his species is very near Jambosa tetraptera Miq., and I do not think it can be held to be more than a variety. King, of course, did not see the Sungai Buloh specimens here placed under Miquel’s species. The variety differs from the type only in the much more conspicuous and persistent bracts, and in the absence of the rufous glandular hairs on the young stems and of the tuberculations on the midrib of the leaf below.

The fruit is c. 7–8 mm. diam., globular, crowned by the short wide calyx rim and lobes; seed 1, globular, cotyledons side by side, nearly equal, conspicuously gland dotted, inner faces folded and excavate, attached near their centres to the large hypocotyle which reaches the periphery of the seed.

Gardens Bulletin, S.
The specimens from Sungai Buloh cited above under Miquel's species are a close match for a sheet of Teysmann 3307 preserved in Herb. Calcutta, which is doubtless part of the type collection. Ridley 13345 has the pseudo-umbellate inflorescence of the type, but the other specimens show a tendency to a paniculate inflorescence which may be due simply to the dropping of the leaves in the axils of which the inflorescences arise, along with a tendency to produce the inflorescences on short peduncles. The typical form of the variety has the flowers in sessile glomeruli, but in other specimens the inflorescence is pseudo-paniculate, again apparently due to the dropping or suppression of leaves and development of short peduncles. This creates an inflorescence very similar to that of E. polita King.

Syzygium pterophorum Merr. & Perry in Mem. Amer. Acad. Arts and Sci., XVIII, 3, 158 (1939), of which I have seen a duplicate of Clemens 31300 (cited in the original description) and SFN 27096 (Carr) is very close to E. tetraperta var. pseudotetraperta, differing only in the pustulate, not glaucous and longitudinally wrinkled calyx tube, the shorter pseudostalk, and possibly in the more quickly deciduous bracts.

116. Eugenia polita King, Mat. F.M.P., No. 12, 110 (1901); Ridl., F.M.P., I, 739; Corner, Wayside Trees of Malaya, p. 501, fig. 168. (Fig. 43a, b, c).

KEDAH: Jerai Forest Reserve, Forest Dept. FMS 17932; Kedah Peak, 3,000 feet, Ridley 5208.

PENANG: sine loc., Wallich 3626; Government Hill, 1,200 feet, Curtis 511 (syntype).

PERRAK: sine loc., Scortechini s.n., Wray 2822 (syntype); Haram Parah, Scortechini 585 (syntype); Larut, 2,500-3,000 feet, Kunstler 6903 (syntype); near Ulu Kerling, 400-600 feet, Kunstler 8679 (syntype); Gopeng, 500-1,000 feet, Kunstler 5780.

SELANGOR: Bukit Cheraka Forest Reserve, Forest Dept. FMS 13023.

MALACCA: Sungai Udang, Holmberg 859 (syntype, cited by King as Ridley's number).

PAHANG: Kuantan, Forest Dept. FMS 6682; Fraser Hill, 4,000 feet, SFN 33207 (Corner).

JOHORE: Kuala Sembrong, Lake & Kelsall 4078 (syntype, cited by King as Ridley's number); Kukub, Forest Dept. FMS 6057; Pulau Setindan, near Mersing, SFN 29769 (Corner).

Distrib: Endemic.

Usually a shrub or small tree but reaching 24-25 m. tall; bark thinly flaky, rufous orange. Twigs slender, Vol. XII. (1949).
acutely 4-angled, more or less winged, the wings sometimes broad and wavy, bark drying pale brown, smooth or flaky. *Leaves* coriaceous or thickly coriaceous, narrowly lanceolate to ovate lanceolate, apex acuminate, sometimes shortly and bluntly, sometimes caudate acuminate, base broadly cuneate or rounded, variable in size, from c. 4·5 cm. × 1·75 cm. to c. 9 cm. × 3·5 cm. or 6 cm. × 3·5 cm., both surfaces shining when dry, the upper liver brown to blackish brown, more or less punctate, lower surface paler and more reddish brown, with scattered black dots; midrib impressed above, usually raised below, sometimes nearly flat; *primary nerves* up to c. 14 pairs, spaced, faint or invisible above, sometimes raised below and quite distinct, sometimes obscure or almost invisible, meeting in an obscure intramarginal nerve close to the leaf margin; petiole very short, drying black and wrinkled.

Panicles axillary and terminal, shorter than the leaves, condensed, usually not more than c. 2–3 cm. long, branches and rachis rather stout, 4-angled and more or less winged, bark drying pale brown and smooth, bracts persistent, very numerous and conspicuous, those at base of panicle narrow with long subulate points, c. 3 mm. long, those subtending the branches oblong ovate or obovate, rounded, conspicuously gland dotted, c. 4 mm. long and 3·5 mm. broad, those subtending the flowers from broadly oblong to linear oblong, blunt, 4–5 mm. long; *flowers* sessile, the bracts overtopping them at least in bud, *calyx* cylindric-funnelshaped, c. 5 mm. long and 3 mm. across mouth, contracted at base into a very short pseudostalk, tube slightly wrinkled; lobes 5, conspicuous, persistent, erect, broadly ovate rounded, c. 1·2 mm. across and 1 mm. tall; *petals* calyptrate; *stamens* c. 2 mm. long, filaments slender, anthers oblong ovate, 0·4–0·5 mm. long, connective gland distinct; *ovary* 2-celled.

Fruit greenish white with very fine dark mottling, more or less globose or ovoid globose, 8–9 mm. long and 7–8 mm. across, crowned by the calyx rim c. 1 mm. high and 2 mm. across, bearing the erect slightly incurved enlarged calyx lobes c. 2 mm. tall, fading when the fruit is fully ripe; pericarp thin, testa dark brown; seed black, nearly globose or slightly oblong globose, 6–7 mm. diam., surface of cotyledons slightly mucilaginous and minutely pitted; cotyledons intense purple, side by side, commissure wavy; inner faces interlocking, point of attachment hidden under fold, hypocotyle large, more or less warty, terete, reaching periphery of seed.

Gardens Bulletin, S.
117. **Eugenia tecta** King, Mat. F.M.P., No. 12, 109 (1901); Ridl., F.M.P., I, 789. (Fig. 43d, e).

Perak: Larut, within 100 feet, *Kunstler* 1863 (type collection); Bukit Blakang Parang, near Gunong Bintang, SFN 21068 (Haniff).

Distrib: Endemic.

A small tree. Twigs slender, acutely 4-angled, the youngest parts narrowly winged on the angles, bark drying dark brown, smooth, becoming flaky. Leaves thinly coriaceous, ovate lanceolate to oblong lanceolate or oblong ovate, apex acuminate, base rounded and more or less cordate, up to c. 9.5 cm. long and 4 cm. broad; both surfaces drying pale brown or pale reddish brown, the upper slightly darker, somewhat polished, sparsely punctate, the lower dull, minutely and sparsely dark gland dotted; midrib impressed above, elevate below, with small scattered tubercles; primary nerves numerous (about 20 pairs), very slightly raised and very faint on both surfaces, invisible in some leaves, nearly horizontal and curving up to an obscure nearly straight intramarginal nerve 1–2 mm. from leaf margin; petiole 2–4 mm. long, densely tuberculate, drying black.

Flowers "golden", crowded in terminal or axillary fascicles, sessile, bracteoles small and subpersistent; *calyx* wrinkled and subglaucous when dry, funnel shaped, 10–11 mm. long and 4 mm. across mouth, tapered to base and contracted into a slender pseudostalk 1.5–3 mm. long; lobes 5, persistent, erect, ovate triangular subacute, c. 2 mm. across and 1.5 mm. tall; *petals* 5, free, ovate orbicular, with large pellucid gland dots, c. 4 mm. diam.; *stamens* numerous, filaments slender, up to c. 8 mm. long, anthers oblong, c. 0.5 mm. long connective gland large and conspicuous.

Fruit globular, 7–8 mm. diam., with large scattered pellucid gland dots, apical umbilicus wide and rather deep, fringed by the erect, slightly enlarged calyx lobes; seed globose, c. 6 mm. diam., cotyledons superposed, nearly equal, commissure wavy, inner faces gland dotted, deeply excavate and folded, attached near their centres by short broad stalks to the very large angled and warted hypocotyle which reaches the periphery of the seed and is there truncate and broadened.

118. **Eugenia jasminifolia** Ridl. in Journ. F.M.S. Mus., X, 133 (1920); F.M.P., I, 740. (Fig. 43f).

Kelantan: Sungai Keteh, SFN 11993 (Nur); Gunong Sitong, Forest Dept. FMS 37751.

Trengganu: sine loc., Forest Dept. FMS 26910.

Perak: Kledang Saiong, Forest Dept. FMS 25795.

Malacca: base of Gunong Mering, Ridley 3299.

Fig. 43. a, b, c, E. polita; d, e, E. tecta; f, E. jasminifolia.

Gardens Bulletin, S.
NEGRI SEMBILAN: Gunong Tampin, Ridley s.n.; Gemas, SFN 4976 (Burkill); Ulu Rembau, SFN 11775 (Nur).

PAHANG: Bukit Kajang, Raub, Forest Dept. FMS 20405; Ulu Serau, Forest Dept. FMS 28233, 28335.

Distrib: Endemic.

A small bushy tree. Twigs very slender, the youngest acutely or obtusely 4-angled, older ones terete, drying smooth and pale brown. Leaves thinly coriaceous, lanceolate to ovate lanceolate, apex acuminate or caudate acuminate, base cuneate or narrowed and minutely rounded, from c. 2·5 cm. × 1 cm. to c. 6 cm. × 2·5 cm., both surfaces drying pale brown to reddish brown, the upper darker, polished and punctate, lower dull, with scattered black dots; midrib impressed above, elevate below, with distant pustulations; primary nerves about 10 pairs, usually very faint or invisible on both surfaces, occasionally slightly raised below; petiole drying black and wrinkled, up to c. 4 mm. long but usually shorter.

Flowers sessile in dense axillary and terminal sessile heads c. 1 cm. across, with numerous narrowly oblong acute papery keeled bracts longer than the flowers, dropping after the flowers open; calyx narrowly funnel shaped, c. 6 mm. long and 3–4 mm. across mouth after anthesis, longitudinally wrinkled, gradually narrowed to base and there contracted into a short pseudostalk 0·5–1 mm. long; lobes 5, persistent, erect, glandular pustulate, ovate triangular, c. 1·5 mm. across and 1·5 mm. tall; petals free (?falling as a calyptra), orbicular, conspicuously glandular pustulate, c. 1·2 mm. diam.; stamens numerous, filaments slender, flattened, up to c. 7 mm. long, anthers elliptic oblong, c. 0·4 mm. long, connective gland distinct; style stout, terete, c. 9 mm. long; ovary 2-celled.

Fruit globular, greenish or white when ripe, c. 8 mm. diam., smooth, minutely and closely glandular, apical umbilicus shallow, c. 3 mm. diam., fringed by the erect calyx lobes; pericarp thin; seed 1, globose or somewhat reniform, testa rather papery, adhering closely to the smooth conspicuously gland pitted surface of the cotyledons; inner faces conspicuously gland dotted, excavate and folded, the hypocotyl large, quadrangular, gland dotted, almost concealed in a fold of one cotyledon, reaching periphery of seed and there expanded and truncate.

The four preceding species, E. tetrapetra, E. polita, E. tecta and E. jasminifolia form a group of closely related species which tend to overlap in a confusing manner. Of none of them is there abundant material and further collections may show that too many species have been made.

Vol. XII. (1949).
They may be distinguished as follows:

Bracts conspicuous, as long as flowers:
- Flowers in sessile heads:
 - Leaves more or less nerveless, narrowed to base *jasminifolia*.
 - Leaves with raised nerves below, bases rounded, usually more or less cordate *tetraptera* var. *pseudotetraptera*.
- Flowers in condensed panicles:
 - Leaves lanceolate, usually narrowed to base *polita*.
 - Leaves with broad, rounded, more or less cordate bases *tetraptera* var. *pseudotetraptera*.

Bracts small or absent:
- Leaves with very faint nerves, midrib below very slightly tuberculate or smooth *tecta*.
- Leaves with conspicuous raised nerves below, midrib conspicuously tuberculate *tetraptera*.

The flowers of the four species are all of the same type, having a narrowly funnel shaped calyx with persistent lobes, but those of *E. tecta* are larger than those of the other three.

The following collection, which belongs in this group, has not been placed. It appears to connect *E. jasminifolia* with *E. tecta*. It has a sessile bracteate inflorescence but the flowers are larger than in *jasminifolia* and approach those of *tecta*. The leaves are thicker and larger than those of *jasminifolia*, rounded and minutely cordate at base, without black dots:

Johore: Gunong Belumut, 3,000 ft., *SFN 10820 (Holttum)*.

119. *Eugenia nitidula* Ridl., F.M.P., V (Suppl.) 308 (1925). (Fig. 44a, b).

Perak: Gunong Inas, 5,000 feet, *Wray 4114, 4115*.

Pahang: Fraser Hill, 4,000 feet, *SFN 8677 (Burkill & Holttum)*, type collection; Cameron Highlands, c. 5,000 feet, *SFN 18039 (Henderson & Whitty)*; Jasar, Cameron Highlands, *Forest Dept. FMS 27309*; Gunong Berumban, Cameron Highlands, *Forest Dept. FMS 31010*; Gunong Lesong, Kuantan, *Forest Dept. FMS 4157*.

Distrib: Endemic.

A bush or bushy tree up to c. 15 m. tall; bark entire, rather rough and bumpy, reddish or greyish brown. **Twigs** slender, the youngest acutely 4-angled, bark drying smooth and pale brown, older ones obtusely 4-angled or terete with slightly flaky dark brown bark. **Leaves** small, stiff, thickly coriaceous, elliptic lanceolate to ovate lanceolate, or almost

Gardens Bulletin, S.
ovate, apex more or less acuminate, base broadly cuneate or rounded, from c. 2 cm. \(\times \) 0.75 cm. or even smaller to c. 3.5 cm. \(\times \) 2 cm., upper surface drying leaden brown to dark reddish brown, shining, sparsely and minutely punctate or black dotted, lower surface pale reddish brown, dull; midrib impressed above, elevate below; primary nerves about 10 pairs, slightly raised and very faint or invisible above, raised below but usually not very distinct, joining an obscure intramarginal nerve close to the recurved leaf margin; reticulations when visible almost as distinct as primaries; petiole up to c. 3 mm. long but often less than 1 mm., drying black and wrinkled.

Flowers sessile in terminal and axillary small rather few flowered bracteate tufts, bracts numerous, persistent, lanceolate acuminate to linear oblong; calyx cylindric funnel shaped, slightly ribbed and obscurely pustulate, c. 4-5 mm. long and 2-5 mm. across mouth, tapered slightly at base into an exceedingly short and obscure pseudostalk; lobes 4, persistent, spreading-erect after anthesis, broadly ovate rounded, c. 1-3 mm. across and a little more than 1 mm. tall; petals calyptrate; stamens numerous, filaments slender, c. 2-3 mm. long, anthers elliptic ovate, c. 0.2 mm. long, connective gland distinct; style stouter than filaments, terete, c. 8 mm. long; ovary 2-celled.

This species is closely allied to E. bankensis (Hassk.) Backer (Syzygium bankense (Hassk.) Merr. and Perry), but differs in the larger, acuminate leaves, the less crowded flowers with less glaucous calyces and in being a mountain, not a lowland plant.

120. *Eugenia clypeolata* Ridl. in Journ. Roy. As. Soc. Str. Br., LXXXII, 185 (1920); F.M.P., I, 754. (Fig. 44c).

Pahang: Slopes beyond Teku river, Gunong Tahan, Ridley 16022 (type collection).

Distrib: Endemic.

A bush, youngest twigs slender, acutely 4-angled, smooth, bark drying pale brown, older twigs stout, terete, with slightly flaky greyish or brownish bark. Leaves very stiff and coriaceous, crowded, ovate or elliptic ovate, slightly narrowed to the blunt or retuse apex, base rounded and minutely cordate, c. 2 cm. \(\times \) 1.5 cm., upper surface somewhat polished, drying olivaceous brown to blackish brown above, lower surface dull, reddish brown; midrib narrowly impressed above, slightly elevate or almost flat below; primary nerves about 8 pairs, very obscure on both surfaces or almost invisible, slightly impressed above, very slightly raised below, the intramarginal nerve sometimes more
distinctly impressed above than the rest of the venation, usually very obscure below; petiole very short and stout, c. 2 mm. long, transversely wrinkled.

Panicles terminal, usually more or less hidden by the leaves, not more than about 1-5 cm. long, densely flowered, the rachis and one pair of very short, stout branches acutely 4-angled with pale yellowish brown bark; flowers sessile, in threes or clusters at ends of branches; calyx cylindric funnel shaped, c. 5 mm. long and 2-5-3 mm. across mouth, tapering slightly to base and there contracted into a pseudostalk of varying length, from almost none to c. 1-5 mm., tube ribbed, obscurely and minutely pustulate especially towards apex; lobes 5, persistent, erect-spreading, broad and rounded, distinctly glandular pustulate, c. 1-5 mm. across and 1 mm. tall, margins thin; petals falling in a hemispherical calyptra c. 3 mm. diam.; stamens numerous, filaments slender, up to c. 4 mm. long, anthers broadly oblong, 0-4-0-5 mm. long, connective gland distinct; style much stouter than filaments, subulate, 4-5 mm. long; ovary 2-celled.

Known only from one collection. Differs from E. Stapfiana in the broader leaves and the much less distinctly pustulate calyx tube.

121. Eugenia Stapfiana King, Mat. F.M.P., No. 12, 119 (1901); Ridl., F.M.P., I, 753. (Fig. 44d, e).

Trengganu: Gunong Padang, 4,000 feet, SFN 31080 (Moysey & Kiah).

Kelantan: Gunong Sitong, 6,000 feet, Jupe s.n., Forest Dept. FMS 37696.

Perak: Wray's Beruman, c. 7,000 feet, Wray 1582 (syntype); Gunong Batu Puteh, 4,500 feet, Wray 216, 1619 (syntypes); Gunong Korbu, 4,500 feet, Robinson s.n., 5,500-7,000 feet, Forest Dept. FMS 32103, 32215; sine loc., Scortechini 336 (syntype).

Selangor: Ulu Semangkok, Ridley 12104; Gunong Ulu Kali, 5,812 feet, Forest Dept. FMS 343.

Pahang: Gunong Tahan, 6,000 feet, Corner s.n.; Cameron Highlands, 4,000 feet, FMS Mus. 11696 (Henderson); Gunong Irau, summit, Forest Dept. FMS 36564; Pinetree Hill, Fraser Hill, Corner s.n., Forest Dept. FMS 29488; Gunong Tapis, Kuantan, 4,600 feet, SFN 28846 (Symington & Kiah).

Distrib: Endemic.

A shrub or small tree up to c. 8 m. tall; bark smooth, not flaky, brownish grey, fuscous. Youngest twigs slender, acutely 4-angled with smooth brown bark when dry, older ones obtusely 4-angled or terete with greyish or brownish more or less flaky bark. Leaves small, thickly coriaceous,
Fig. 44. a, b, E. nitidula; c, E. clypeolata; d, e, E. Stapfiana; f, E. spicata; g, E. grata; h, E. spissifolia; j, E. leucoxylon.

Vol. XII. (1949).
rigid, broadly lanceolate to elliptic or ovate, tapering to the broad blunt subacute or rounded and sometimes retuse apex, base broadly cuneate or rounded, from c. 1-5 cm. to 2 cm. long and 0-75 cm. to 1-5 cm. broad; upper surface drying olivaceous brown to blackish brown, shining, more or less scattered-punctate, lower surface reddish brown, dull; midrib impressed above, flat or slightly elevate below; primary nerves 7–8 pairs, usually almost or quite invisible above, sometimes slightly raised below and faint, or invisible; leaf margin recurved; petiole stout, very short, drying black and wrinkled, usually less than 3 mm. long.

Panicles terminal, short, scarcely exceeding the leaves, rather densely flowered, the short branches stout, 4-angled with conspicuous wavy wings; flowers sessile or very shortly and stoutly pedicellate, subtended by small subpersistent bracteoles; calyx narrowly funnel shaped or narrowly campanulate after anthesis, 5–6 mm. long, 2-5–3 mm. across mouth, gradually tapered to base and contracted into a short pseudostalk up to c. 1-5 mm. long, longitudinally ribbed and conspicuously coarsely pustulate; lobes 5, erect, persistent, broadly ovate rounded, thick textured with thin margins, 1-5–2 mm. across and c. 1 mm. tall; petals falling as a calyptra, partially agglutinated or free, orbicular, sparsely gland dotted, c. 2.5 mm. diam.; stamens numerous, filaments slender, up to c. 8 mm. long, anthers ovate, c. 0.5 mm. long, connective gland conspicuous; style stout, subulate, 5–6 mm. long; ovary 2-celled.

Fruit white, globular, c. 5 mm. diam., wrinkled and glandular pustulate when dry, apex crowned by the short wide calyx rim c. 3 mm. diam., bearing the erect enlarged calyx lobes; seed 1, somewhat reniform, surfaces of cotyledons smooth and pitted; cotyledons nearly equal, inner faces folded and excavate, attached near the periphery to the large quadrangular gland dotted hypocotyle which reaches the surface of seed.

A common species on the summits and ridge tops of the higher hills which I believe to be closely related to E. spicata var. tenuiramis, of which it might even be considered an extreme form. It differs, however, in the much shorter thicker leaves not caudate acuminate, and in the shorter inflorescences and shorter pseudostalk. The shape of the calyx tube is very close to that of E. spicata and it has similar pustulations. Another ally is E. kinabaluensis Stapf from Mt. Kinabalu in Borneo, which has more rotund retuse leaves and a smooth calyx tube. E. nitidula Ridl. is also very similar, but this has acuminate leaves and a smooth calyx tube.

Gardens Bulletin, S.

Common in the lowlands from Kedah and Trengganu to Singapore, usually by seashores and rivers but also in forest and secondary growth.

Distrib: India, Ceylon, Burma, Indo-China, China, Siam, Malaysia.

A *bush* or small straggly *tree* reaching c. 9 m. tall; bark thinly papery flaky, rufous orange, inner bark very thin, pale fawn. *Twigs* slender, obscurely 4-angled or terete with pale brown or greyish or reddish brown bark. *Leaves* coriaceous, lanceolate, elliptic lanceolate or ovate lanceolate, apex bluntly or acutely acuminate, base broadly cuneate or rounded, from c. 4 cm. to 9 cm. long and 1.5 cm. to 4 cm. broad; upper surface shining, drying brown to dark reddish brown, black dotted or punctate, lower surface paler and duller with minute scattered darker glands; midrib impressed above, slightly elevate or flat below; *primary nerves* 10–14 pairs, 2–4 mm. apart, usually finely impressed above and faint or almost invisible, very fine and raised below, distinct or obscure, curving up rather irregularly to a fine intramarginal nerve 1–1.5 mm. from leaf margin; secondaries and reticulations rather faint and obscure; petiole short, slender, drying black, up to c. 4 mm. long.

Panicles terminal and axillary, crowded, the axillary ones usually shorter than the leaves, the terminal ones often longer, branches and rachis slender, 4-angled, drying pale, the branches short or long, sometimes none; *flowers* faintly fragrant, white, sessile in threes or clusters on the rachis, at the ends of the branches, or at ends of the very short ultimate branchlets; *calyx* cylindric-funnel-shaped, c. 6 mm. long and 2–2.5 mm. across mouth, conspicuously and coarsely pubescent, constricted at base into a slender pseudo-stalk reaching c. 4 mm. long; lobes 5, erect, persistent, broadly ovate rounded, a little less than 1 mm. tall; *petals* falling in a hemispherical calyptra c. 2.5 mm. diam., sparsely gland dotted; *stamens* numerous, filaments slender, up to c. 8 mm. long, anthers oblong elliptic, c. 0.4 mm. long connective gland conspicuous; *style* stouter than filaments, c. 8 mm. long; *ovary* 2-celled.

Fruit oblong or oblong globose, white, c. 5–7 mm. long, apex deeply and narrowly excavate, with the erect or incurved calyx lobes; pericarp pithy, sweet; seed 1, greenish, cotyledons nearly equal, inner faces folded and excavate, the hypocotyl large, reaching periphery of seed.

E. spicata Lamk. var. *tenuiramis* (Miq.) var. nov.

Pahang: Kluang Terbang, Gunong Benom, 5,000 feet, *Barnes 10869* (type collection of *E. longicauda* Ridl.).

Johore: Gunong Belumut, 2,500 feet, *SFN 10790* (*Holttum*), leaf specimens only; Gunong Panti, in ridge forest on summit, 1,600 feet, *Corner s.n., SFN 32217* (*Corner*), *Forest Dept. FMS 35755*.

Distrib: Sumatra, Philippines.

I have seen several sheets, preserved in Herb. Calcutta, of Teysmann’s collection from Sumatra, “ad littora Siboga”, which is quoted by Miquel. These match very closely the type of *E. longicauda* Ridl., and also the type of *E. nitidissima* Merr., the latter differing only in the paler and rather broader leaves and in the strongly angled youngest shoots. These angled shoots are present in only one of the Malay Peninsular collections, but it seems probable that the very young shoots quickly lose their angles and become terete. *SFN 10790* from Gunong Belumut is sterile but otherwise a close match for Teysmann’s specimens.

The variety differs from the typical form only in the narrower, longer, long caudate-acuminate leaves, which are usually thicker in texture. There is a very considerable range of variation in size and shape of leaves in the typical form and narrow long caudate leaves are often found along with the normal broader blunter leaves on the same individual. The variety appears never to have the broad leaves of the typical form.

King has written up the sheets of Teysmann’s collection in Herb. Calcutta as *E. zeylanica* Wight. There may be no justification for maintaining the variety, but it looks very different and in Malaya at least has a different habitat from the typical form.

The type of *Jambosa tenuiramis* Miq., which I have not seen, came from “Onder-Tapanoeli”, Sumatra, and in Miquel there is no indication at what altitude above sealevel it was collected. Teysmann’s collection from Siboga is from the coast, and this is the normal habitat of *E. spicata*. All the

Gardens Bulletin, S.
Malayan collections and the Philippine collection of the variety come from forested ridges from about 1,000 feet upwards.

True *E. spicata* is not recorded from the Philippines, but it is common in Borneo. Its nearest ally in the Philippines appears to be *E. glaucicalyx* Merr. C. B. Robinson in Philipp. Journ. Sci., IV, 382 hints that this may not be separable from *E. spicata*, but the few specimens I have seen of it show a smooth, glaucous, not pustulate calyx tube, which would place it nearer *E. grata* Wight.

123. *Eugenia grata* Wight, Ill., II, 15 (1841); Duthie in Hook. fil., F.B.I., II, 486; King, Mat. F.M.P., No. 12, 109; Ridl., F-M.P., I, 739; Craib, Fl. Siam. Enum., I, 644; Corner, Wayside Trees of Malaya, p. 498. (Fig. 44g).

Common on rocky and sandy seashores from Kedah and Trengganu to Johore, commonest in the north of the Peninsula, but found also in the wet forests of S.E. Johore.

Distrib: Assam, Burma, Siam, Sumatra, ? Borneo, ? Philippines.

Usually a small tree but reaching c. 18 m. tall, trunk sometimes slightly stilt rooted at base; bark coarsely papery flaky, reddish brown or orange brown. **Twigs** slender, terete or obscurely 4-angled, bark drying pale brown or brown, somewhat flaky in older twigs. **Leaves** coriaceous, lanceolate to ovate lanceolate, apex acuminate, base cuneate, from c. 3–11 cm. long and 1.5–5.5 cm. broad, usually c. 7–10 cm. × 2–3.5 cm., upper surface shining, drying pale brown to blackish brown, often sparsely punctate, lower surface duller and paler, often subglaucous, sometimes sparsely black dotted; midrib impressed above, more or less elevate below; **primary nerves** about 12 pairs, usually less than 0.5 cm. apart, somewhat irregular, obliquely ascending and curving up to a nearly straight intramarginal nerve 2–3 mm. from leaf margin, slightly impressed or slightly raised above, faint or very faint, usually slightly elevate and distinct below, sometimes faint, secondaries and reticulations when visible less distinct than primaries; petiole rather slender, channelled above, transversely wrinkled, c. 0.5 cm. long.

Inflorescence as in *E. spicata*; **flowers** white, sessile; **calyx** narrowly cylindric funnellshaped, c. 6 mm. long and 2–2.5 mm. across mouth, wrinkled and glaucous, rather obscurely glandular pustulate, contracted at base into a distinct pseudostalk 1–2 mm. long; lobes 5, erect, persistent, broadly ovate rounded or ovate triangular, c. 1–1.3 mm. across and c. 1 mm. tall; **petals** probably falling as a calyptra, free or partially agglutinated, orbicular, gland

Vol. XII. (1949).
dotted, c. 1.5–2 mm. diam.; stamens numerous, filaments slender, reaching c. 8 mm. long, anthers elliptic oblong, c. 0.4 mm. long, connective gland distinct; style much stouter than filaments, terete, c. 10 mm. long; ovary 2-celled.

It seems probable that E. grata Wight is Caryophyllus antisepticus Bl. in DC., Prodr., III, 262 (1828); Syzygium antisepticum (Bl.) Merr. and Perry in Mem. Amer. Acad. Arts and Sci., XVIII, 3, 159 (1939); and that Eugenia glaucicalyx Merr. in Philipp. Gov. Lab. Bur. Bull., XXXV, 50, should be reduced to it, giving the species a range from Assam to the Philippines through Burma, Siam, Sumatra and Borneo, with a possible extension to China.

Unfortunately I have not seen any authentic material of E. grata, and of the material quoted as Bornean of S. antisepticum only a poor sheet of E. cuprea Koord. and Valet. has been available. This might easily be called E. grata. Merrill and Perry mention Kunstler 5414 as being very close to S. antisepticum, except that the leaves are smaller. This collection has smaller and more cuspidate leaves than the bulk of the Malayan collections placed with E. grata, but there is a great range of variation in the shape, size and venation of the leaves in these collections.

In view of the fact that I have not been able to check the reductions made by Merrill and Perry and because the name E. grata is used for this species in most recent works, I prefer to leave it there in the meantime.

There is one puzzling point regarding the fruit. Duthie and King describe it as black and King makes this one of the characters separating E. grata from E. spicata, which has a white fruit. Craib, who apparently does not consider the Malayan plant to be grata, mentions the dark fruit of grata in connection with a variety of this species which he describes and which has a white fruit. E. glaucicalyx Merr. is described as having a white fruit. Corner, who has seen living fruit of the Malayan plant, describes it in Wayside Trees of Malaya as white or greenish white. The descriptions of Caryophyllus antisepticus do not mention fruit. These discrepancies may indicate that E. grata Wight is not the Malayan plant, and that we have another very closely related species taking its place, which may or may not be Blume’s species. Whatever our plant may be it is closely related to E. spicata Lamk. but can be distinguished at once by its glaucous wrinkled calyx tube without pustulations, with usually a shorter pseudostalk.

Gardens Bulletin, S.
124. *Eugenia spissifolia* Ridl. in Journ. F.M.S. Mus., V, 32 (1913–14); F.M.P., I, 753. (Fig. 44h).

Selangor: Gunung Mengkuang, 5,000 feet, Robinson s.n. (type collection).

A shrub. **Twigs** 4-angled, drying dark brown or almost black, with finely wrinkled bark. **Leaves** very coriaceous, stiff, orbicular, or broadly elliptic, or broadly oblong elliptic, apex round, base rounded and slightly cordate, up to c. 4 cm. long and 4 cm. broad; both surfaces drying yellowish, the upper polished and minutely punctate, the lower dull, somewhat rugulose and sparsely and minutely black dotted; midrib slightly channelled above, raised below and more or less keeled; **primary nerves** about 10 pairs, spreading, almost or quite invisible above, slightly raised and faint below, a very faint intramarginal nerve sometimes just visible close to the thickened and recurved leaf margin; secondaries below somewhat fainter than primaries, reticulations seldom visible; petiole very short, broad, transversely wrinkled, the leaves appearing sessile.

Panicles terminal, up to c. 2–3 cm. long, rachis and short branches 4-angled; **flowers** sessile; **calyx** narrowly funnel shaped, 9–10 mm. long, somewhat swollen at apex and gradually narrowed to base, wrinkled and obscurely pustulate; lobes 5, one much larger than the others and subpetaloid, the 4 smaller ones broadly ovate rounded, c. 1 mm. across and 0.5 mm. tall, the large one thin, broadly ovate orbicular, c. 1.5–2 mm. diam.; **petals** not seen; **stamens** numerous, short, reaching c. 1.3 mm. long, filaments stout, tapering upwards, anthers broadly ovate elliptic, c. 0.4 mm. long, connective gland none; **style** stout, 3–4 mm. long.

Known only from one collection but a distinct species in its very thick small round leaves and the long flowers with short stamens.

Trengganu: Kemaman river mouth, *Forest Dept. FMS* 26994. **Penang:** sine loc., *Phillips* s.n., *Wallich* 3579. **Perak:** sine loc., *Scortechini* s.n.; Pulau Lallang, *Seimund* s.n.; Pulau Rumpia, *Kloss* s.n.

A tree reaching c. 15 m. tall; bark entire, very smooth with persistent leaf scars, or rather scaly, uneven and bumpy, slightly flaky fissured when old, light grey or buff grey; inner bark brownish or purplish brown with green layer below surface. Twigs slender, terete, bark drying pale yellowish, smooth or becoming flaky. Leaves thinly coriaceous, ovate, or elliptic, or oblong elliptic, apex acuminate, base broadly cuneate, from c. 5 cm. × 2-5 cm. to 10 cm. × 5 cm.; upper surface shining, drying pale brown or greenish brown to reddish brown, very minutely punctate, lower surface paler, dull, minutely black dotted; midrib impressed above, elevate below; primary nerves numerous and close together, meeting an intramarginal nerve c. 1 mm. from leaf margin, very fine and slightly raised on both surfaces, slightly more evident above, reticulations numerous, almost as distinct as primaries; petiole slender, reaching 1.5-2 cm. long.

Panicles terminal or from upper axils, clustered, up to c. 9 cm. long, peduncle and branches slender, 4-angled with rather dark striate bark when dry; flowers small, in threes or twos or solitary at the ends of the short slender 4-angled ultimate branchlets, pedicelled or sessile, the two outer flowers of the triads often pedicelled and the centre one sessile; calyx 2-5-3 mm. long, c. 1 mm across mouth before anthesis, constricted below the globose turbinate apex into a rather slender ribbed pseudostalk 1.5-2 mm. long; mouth with 4 distant, small but rather conspicuous, erect, broadly ovate rounded or acute lobes; petals agglutinated into a thick calyptra c. 1.2 mm. diam. (separable, fide Miquel); stamens numerous, filaments stout, up to c. 0.5 mm. long, anthers ovate, 0.2-0.3 mm. long, connective gland small; style stout, c. 0.5-1 mm. long; ovary 2-celled.

Fruit ripening white suffused rose purple, more or less ellipsoid to oblong ellipsoid, or nearly globose, somewhat compressed, slightly oblique, c. 6-7 mm. long and 5-6 mm. diam., smooth or faintly vertically ridged, apical umbilicus shallow, c. 2 mm. diam., the calyx rim usually rather prominent, 0.5-0.75 mm. tall, with obscure remains of calyx lobes and style base; cotyledons nearly equal, side by side, sessile or very shortly stalked, inner faces conspicuously gland dotted, slightly excavate.

Gardens Bulletin, S.
A well marked species with its pale twigs, rather thin, closely nerved acuminate leaves with long petioles, and very small flowers.

Although I have not seen Korthal's type, nor any of the material quoted by Merrill and Perry, Korthal's description and Miquel's descriptions and figure fit our plant. I have seen no authentic material of the Philippine E. brevistylis C. B. Rob. which Merrill and Perry reduce to S. leucoxyylon.

There seems to be some confusion in Ridley's Flora over this species. He gives the habitat as "hill woods to 2,000 ft. altitude" apparently on the basis of specimens from Penang of his own collecting ("Penara Bukit; Hill 2,000 ft. altitude") which I have not been able to trace. All the other collections for which data are available come from low altitudes, and the habitat of the species seems to be seashores and tidal rivers.

Singapore: Reservoir Jungle, SFN 36133 (Corner).

Distrib: Endemic. Specimens collected at Bukit Kajang, Kemaman, SFN 30481 (Corner), may also belong here.

A tree c. 40 m. tall with steep narrow buttresses to c. 2 m.; crown large, spreading; bark light buff, slightly scaly, flaky, smooth over large areas, slightly pustulate with lenticels, otherwise entire; inner bark thick, pale brownish yellow with fine longitudinal sclerotic strands; wood pale brownish buff. *Twigs* rather slender, terete, smooth, pale whitish grey to very pale yellowish, somewhat polished, youngest shoots often angled or channelled. *Leaves* thinly coriaceous, usually obovate, sometimes elliptic or oblong elliptic, up to c. 7 cm. × 3.5 cm. but usually smaller, apex abruptly acuminate, acumen up to 1 cm. long, base long narrowed and decurrent on petiole; upper surface dull olivaceous brown or blackish brown when dry, lower surface paler brown or yellowish brown, with sparse brownish gland dots; midrib sunk above, raised below; *primary nerves* up to c. 8 pairs, often fewer, 5–8 mm. distant, slightly raised above or hardly visible, fine and raised below, meeting in an intramarginal nerve c. 3 mm. from leaf margin; secondaries and reticulations invisible above, less conspicuous than primaries below, reticulations lax; petiole up to c. 1 cm. long, often finely glandular pustulate.

Panicles terminal or from upper axils, the terminal ones often fasciculate, up to c. 9 cm. long but usually shorter, primary branchlets ascending, up to c. 2 cm. long, secondary branchlets 5–7 mm. long, both slender with brown striate bark; *flowers* small, sessile, usually in threes, sometimes in

Vol. XII. (1949).
pairs at branchlet ends; buds c. 3 mm. long; calyx c. 2-5 mm. long, c. 1-75 mm. across lobes, tube more or less fusiform, suddenly contracted below lobes, swollen about ovary, then gradually narrowed to a pseudostalk c. 1 mm. long; lobes 4, broadly triangular, blunt or subacute, incurved, c. 0-5 mm. high and 1 mm. wide; petals calyptrate; stamens about 16 in a single row on edge of disc, 0-5–1 mm. long, filaments stout, the upper part remaining sharply bent inwards until long after the flower opens, anthers 0-2–0-3 mm. long, connective gland conspicuous; style c. 0-5 mm. long; ovary 2-celled with few ovules in each cell.

Fruit pale shining green, broadly oblong to oblong obovoid, up to c. 1-5 cm. long and 1-5–1-75 cm. wide, apex depressed, with a conical excavation 4–5 mm. diam., fringed with the minute calyx rim; pericarp firm, green, slightly juicy, c. 5 mm. thick; seed 1, globose or somewhat depressed globose or obovoid, testa thin, papery, loose, pale brown, cotyledons dark blackish brown, completely fused, without visible commissure, taking the form of a hollow ball when fully ripe.

This very peculiar species is readily distinguished from all others in Malaya by its large size, its small leaves, its very small flowers with few stamens and its unusual seed; and it should perhaps be placed in a new section of the genus.

It is a striking commentary on the incompleteness of our knowledge of the flora of this region that this species, and others enumerated in this paper, should have remained undetected for so long in Singapore Island, large and conspicuous trees though they are. One can only surmise how many species may have been obliterated without becoming known to science when at this late date, when the original forest has been reduced to a few remnants, at least three species in one genus alone are found to be new, and several others have never before been collected on the island.

Kedah: Kedah Peak, c. 3,500 feet, SFN 14849 (Holttum). Penang: Government Hill, 500 feet, Curtis 193; Waterfall, Curtis 2972; sine loc., 800 feet, Kunstler 1363.

Perak: sine loc., Scortechini 132.

Gardens Bulletin, S.
Fig. 45. a, b, E. attenuata; c, E. attenuata var. montana; d, E. attenuata var. ophirensis; e, E. napiformis.

Vol. XII. (1949).
SELANGOR: Kanching Forest Reserve, Forest Dept. FMS 12474, 47141; Sungai Lallang, Forest Dept. FMS 24147; Klang Gates, SFN 10036 (Burkill), Forest Dept. FMS 13136, 33202, 33205, 37445, 39400; Sungai Tinggi, Forest Dept. FMS 14056; Kuala Selangor, SFN 34075 (Nur).

MALACCA: Merlimau, Derry 1177; sine loc., Maingay K.D. 744.

PAHANG: 28th mile, Cameron Highlands road, Forest Dept. FMS 36292.

JOHORE: Top of Gunong Banang, Ridley 11054.

SINGAPORE: Kranji road, SFN 29056 (Corner); Bukit Timah, SFN 34680 (Ngadiman), 34958 (Corner), 34777, 36381 (Henderson), 36115 (Kiah), 36440 (Liew).

Distrib: Borneo, Java.

A tree, trunk sometimes slightly fluted-buttressed at base; bark more or less coarsely papery flaky, but not strongly so except in young trees, scaling in rather large pieces, rufous orange or warm red brown; inner bark reddish brown or pinkish fawn. Twigs slender, the youngest acutely 4-angled or terete, bark drying whitish to pale brown, smooth or somewhat flaky in older twigs. Leaves coriaceous, lanceolate or elliptic lanceolate, apex usually long acuminate with obtuse acumen, or shortly, broadly and bluntly acuminate, base acute, from c. 3 cm. × 1.5 cm. to 8 cm. × 3 cm., both surfaces drying yellowish or brownish yellow, the lower paler, rather densely punctate above and usually finely black dotted below; midrib slightly impressed above, slightly raised below and more or less keeled; primary nerves numerous and close together (up to c. 30 pairs), usually almost or quite invisible above, very slightly raised and very fine below, joining a very fine intramarginal nerve 1 mm. or less from leaf margin, often almost invisible, especially in thick textured leaves; petiole up to c. 5 mm. long, transversely wrinkled when dry.

Panicles terminal or from upper few axils, up to c. 7 cm. long, usually stouter, pedunculate, the peduncle, rachis and branches slender, 4-angled, the bark drying pale and more or less pustulate; flowers white, in threes, fives, or rather dense clusters at the ends of the short, erect-spread ing branches; calyx 6–8 mm. long, more or less pustulate, often conspicuously so, ribbed when dry and obscurely 4-angled, narrowed below the cyathiform upper part into a very slightly tapering tube c. 5 mm. long; lobes 5, shallow broad and rounded, or 4, ovate triangular, subpersistent; petals free, orbicular, more or less gland dotted, c. 1.5 mm. diam., or calyptrae and more or less agglutinated; stamens numerous, filaments stout below, more or less glandular pustulate at base, up to c. 1.5 mm. long, anthers broadly ovate oblong, c. 0.2–0.3 mm. long, without connective gland,

Gardens Bulletin, S.
anther sacs somewhat divaricate; style stout, tapering slightly to the truncate apex, coarsely glandular pustulate, c. 2 mm. long; ovary 2-celled, multi.ovulate.

Fruit oblong or oblong-obovoid, 7–8 mm. long, 4–6 mm. across, apex deeply and narrowly excava ted, fringed with remains of calyx tube and stamens, pink or pale whitely green on one side; pericarp white, outer layer juicy pulpy or fleshy, rather thin, peeling away easily from the hard very fibrous endocarp; testa thin, adhering closely to cotyledons or occasionally coming away with pericarp; seed conforming to shape of fruit, with flattened apex, cotyledons dull pinkish brown with conspicuous darker gland dots, oblique, triangular with folded inner faces, the large hypocotyle lying in the fold and extending to the periphery of seed. Germination epigeal.

Apart from certain variations in the foliage of the specimens placed under this species, consisting mainly in the distinctness or obscurity of the venation, there are also variations in the flowers. The shape of the calyx tube remains rather constant, but there may be 5 rather inconspicuous shallow lobes or 4 more distinct subacute ones, the pustulations on the tube may be evident or obscure or absent, and the petals may be free and conspicuously glandular or almost entirely agglutinated into a thick calyptra without glands. It is unlikely, however, that more than one species is represented by the material cited.

Merrill and Perry hesitate to reduce E. penangiana to E. attenuata because of conflicting statements by King and Ridley, both of whom included E. rhamphiphylla and E. napiformis in their conception of the species, but typical E. penangiana agrees well with material quoted under E. attenuata by Merrill and Perry and it agrees with Koorders and Valeton's description and figure of that species as well as with the Buitenzorg material of it. E. attenuata is closely allied to E. rugosa but is distinguishable from it not only by its smaller and less conspicuously nerved leaves and by small differences in the flower, but also by its bark characters.

E. attenuata Koord. and Valet. var. ophirensis var. nov. (Fig. 45d).

A typa foliis minoribus, latioribus, abrupte caudatis differt.

JOHORE: Mount Ophir, Ridley s.n., 3298, TYPE collection, holotype in Herb. Singapore, 10059, Fielding s.n.

Apparently placed by Ridley under E. caudata King.

Vol. XII. (1949).
E. attenuata Koord. and Valet. var. montana var. nov. (Fig. 45c).
A typa foliis crassioribus, cortice ramulorum nigro, calycis lobis maioribus, tubo minus pustulato differt.

Pahang: Cameron Highlands, 5,000 feet, SFN 23559 (Henderson), TYPE collection, holotype in Herb. Singapore, c. 4,000 feet, SFN 32595 (Nur); 47th mile, Telom road, SFN 31256 (Holttum).

128. Eugenia rhamphiphylla Craib in Kew Bull. (1930) 168; Fl. Siam. Enumer., I, 659. Syzygium rhamphiphyllum (Craib) C.E.C. Fischer in Kew Bull. (1937) 438. (Fig. 46a).

Kedah: Bukit Tunggal, Forest Dept. FMS 12411.
Penang: Government Hill, Curtis 2790; Penang Hill, 100 feet, SFN 35357 (Kiah).
Distrib: Burma, Siam.
A tree. Twigs slender, the youngest more or less angled, drying pale grey, older ones terete, drying brownish. Leaves thinly coriaceous, oblong oblanceolate or narrowly elliptic lanceolate, occasionally elliptic or oblong elliptic, apex obtusely or subacutely acuminate, base cuneate or long narrowed, from c. 5-8.5 cm. long and 2-4.5 cm. broad, both surfaces drying pale brown or reddish brown, the upper punctate or pustulate, the lower with minute scattered pustulations; midrib slightly impressed or flat above, more or less elevate below and keeled; primary nerves numerous, parallel and close together, curving up to an intramarginal nerve close to the recurved leaf margin, raised on both surfaces and very fine but distinct, especially below, sometimes obscure above, the reticulations almost as distinct; petiole slender, 5-6 mm. long, channelled above.
Panicles terminal or from upper axils, usually several together at tips of twigs, shorter than leaves, few flowered, usually with one pair of short branches, they and the peduncle slender, 4-angled; flowers sessile, in twos or threes or solitary at the ends of the branches or occasionally at the ends of very short branchlets; calyx c. 1.5 cm. long, longitudinally wrinkled and obscurely and minutely pustulate, campanulate above the ovary after anthesis, c. 4 mm. across mouth, suddenly contracted below to a slender pseudostalk c. 1 cm. long; lobes 5, obscurely glandular pustulate, the three outer persistent, ovate triangular, c. 1 mm. tall and a little more across base, the two inner ovate orbicular, c. 2 mm. diam.; petals 5, free, rather thick textured and obscurely glandular pustulate, orbicular, c. 2 mm. diam.; stamens numerous, filaments stout, tapering upwards, up to c. 4 mm. long, anthers ovate oblong, c. 0.4-0.5 mm. long, without connective gland; style stout,

Gardens Bulletin, S.
Fig. 46. a, *E. rhamphiphylla*; b, *E. rugosa*; c, *E. rugosa* var. *cordata*; d, *E. fusticulifera*.

Vol. XII. (1949).
narrowly conical with expanded truncate apex, 2–2.5 mm. long, hardly exceeding calyx rim; ovary 2-3-celled.

Fruit cylindric oblong or narrowly oblong obovoid, somewhat tapered to base, c. 2 cm. long and 6–8 mm. diam., pale when dry and finely wrinkled, with small but conspicuous dark gland dots, apex deeply excavate, c. 4–5 mm. across, with the very short calyx rim and remains of calyx lobes. (In the only fruiting material available, SFN 35357, the seed has not developed, although the fruit appears to be fully grown).

Perak: Lower Camp, Gunong Batu Puteh, Wray 1075; Larut, 1,000–1,500 feet, Kunster 6965.

Malacca: Merlimau, Alvins s.n.; sine loc., Alvins s.n.

Pahang: Pramau, Pekan, Ridley s.n., 1021; Kuantan, Forest Dept. FMS 15071.

Johore: 4 miles N.W. of Johore Bahru, SFN 16352 (Burkill & Haniff), type collection of *E. johorensis* Ridl. (1925); Scudai river, Ridley s.n.; Yong Peng, Corner s.n.; Bukit Tinjau Laut, Corner s.n.

Singapore: sine loc., Cantley s.n.; 15th mile Jurong road, SFN 26190 (Corner); Bukit Timah, SFN 34605 (Corner), SFN 34778, 34779, 35929, 35930, 35933 (Henderson), SFN 35798, 36190, 36200, 36403, 36404, 36409, 36412 (Ngadiman).

Distrib.: Borneo.

A tree, trunk cylindric, slightly fluted at base, or with very short small buttresses; bark narrowly or irregularly fissured, outermost layers slightly papery flaky or not, flaking in small irregular pieces or in long strips, dull red or warm red or greyish-reddish-brown; inner bark thick, fibrous, bright pinkish red, turning mauve purple on exposure. Twigs slender, the youngest acutely 4-angled, drying pale and slightly pustulate, older ones obscurely 4-angled to terete, brown to greyish, smooth, becoming slightly flaky. Leaves decussate, thickly coriaceous, variable in shape and size even on the same tree, from narrowly oblong lanceolate to ovate elliptic or ovate, apex shortly acuminate or acute, often bent back, base broadly or

Gardens Bulletin, S.
narrowly cuneate, from c. 6 cm. to 16 cm. long and 2 cm. to 7 cm. broad, upper surface usually shining, drying greenish brown to dark brown, more or less punctate or minutely pustulate, lower surface usually dull, often drying darker than the upper, minutely rugulose pustulate, or black dotted, or eglandular; midrib more or less impressed above, or channelled, elevate below, sometimes very slightly, usually more or less keeled; primary nerves c. 10–30 pairs, usually 0.5 cm. or less apart, often appearing close and numerous when secondaries are well marked, very slightly raised above and usually very obscure or invisible, raised and very fine below, sometimes obscure, meeting a faint intramarginal nerve 1 mm. or less from leaf margin; secondaries sometimes almost as distinct as primaries, sometimes obscure, reticulations obscure or invisible; petiole 3–10 mm. long.

Inflorescences terminal and axillary, short and densely flowered, reaching c. 4 cm. long, clustered, paniculate with few short branches or cymose, the peduncle and branches slender, angled and striate when dry; flowers sessile, usually in clusters at the ends of the branches and at apex of inflorescence, or in threes, twos or solitary, bracteoles very minute, broad, rounded, subpersistent; calyx pale green, minutely white dotted, somewhat angled and wrinkled when dry, smooth or slightly angled and ribbed in life, minutely glandular, narrowly obovate in bud, 6 mm. to nearly 10 mm. long, after anthesis more or less funnel shaped, swollen above ovary and slightly constricted immediately below lobes, tapering gradually from below ovary to base, or slightly constricted below ovary; lobes 4 or 5, rather variable, broadly ovate, rounded or subacute; petals white, free, or calyptrate and partially agglutinated, rather thick textured, orbicular, up to c. 2 mm. diam.; stamens numerous, filaments white, up to c. 2.5 mm. long, stout, broad and flattened at base, tapering upwards, anthers ovate oblong, c. 0.4 mm. long, without connective gland; style stout, terete, 4–5 mm. long, hardly exceeding the calyx rim, apex truncate or rounded with conspicuous stigmatic surface; ovary 3-celled.

Fruit broadly obconic to slightly turbinate, up to c. 1 cm. long and 0.75 cm. across apex, bright red pink, apex more or less truncate with a deep narrow excavation c. 2 mm. diam., fringed with the short enlarged calyx lobes and withered stamens and bearing style remains; pericarp firm, outer layer white, juicy, pulpy when fully ripe, c. 1–2 mm. thick; endocarp hard, fibrous, dark green; seed more or less obovoid, c. 5 mm. × 3.5 mm., apex obliquely truncate, testa rather thick, pithy, loose, surface of cotyledons gland dotted and pustulate, pale pink, inner faces with longitudinal fold

Vol. XII. (1949).
and groove accommodating the large hypocotyle which reaches the periphery of the seed at its base. The structure is similar to that in *E. attenuata*.

This species varies in foliage and flowers in much the same way as does *E. attenuata*, but again there seems no basis for considering that more than one species is involved in the material cited.

E. rugosa Merr. var. *saxitana* (Ridl.) var. nov.

Eugenia saxitana Ridl. in *Kew Bull.* (1928) 74.

Selangor: Ulu Semangkok, Ridley s.n.

Pahang: Gunong Tahan, 5,000 feet, *Seimund 357* (type collection of *E. saxitana*).

The only differences between these collections and the plants placed under typical *E. rugosa* are the darker bark of the twigs of the variety, their somewhat thicker leaves, the nerves being obscure in *Seimund 357* but distinct below in Ridley's Ulu Semangkok specimen, and their mountainous habitat.

E. rugosa Merr. var. *cordata* var. nov. (Fig. 46c).

A typa foliis subsessilibus, latioribus, basi cordatis differt.

Kelantan: Gunong Stong, *Forest Dept. FMS 37692, 37720.*

Pahang: Fraser Hill, *Forest Dept. FMS 27109, TYPE collection, holotype in Herb. Kepong, 4,000 feet, SFN 11211 (Nur).*

Selangor: Sempang, Ridley 15599.

This looks at first sight very different from typical *E. rugosa*, but the only real difference is the broader cordate leaves. The collections cited above differ amongst themselves considerably in size of leaf, but typical *E. rugosa* does so also, even on the same tree, although never to the extent of having cordate leaf bases.

Pahang: Rompin, *Forest Dept. FMS 15602, 17157.*

Distrib.: Borneo.

A *tree*. Twigs slender, terete, bark smooth, drying pale brown or greyish. *Leaves* coriaceous, ovate lanceolate or ovate elliptic, apex bluntly acuminate, base acute, c. 6–8 cm. long and 2.75–3.5 cm. broad, both surfaces drying pale brown to cinnamon brown, the upper somewhat polished, minutely punctate, the lower dull, minutely pustulate; midrib slightly channelled above, more or less elevate below,

Gardens Bulletin, S.
rounded or keeled; primary nerves numerous and close together, meeting an almost straight intramarginal nerve less than 1 mm. from leaf margin, slightly sunk above and almost invisible, raised below, very fine and rather indistinct; petiole drying black, c. 0·5 mm. long.

Panicles terminal or from upper axils, reaching c. 7·5 cm. long, either long pedunculate and lax with 1–3 distant pairs of branches, or rather dense and branched from base, peduncle and branches slender, 4-angled; flowers sessile, often in threes, or in clusters at the ends of the branches or of very short branchlets; calyx c. 1·3 cm. long, the upper part suddenly inflated, globose turbinate, c. 4–5 mm. diam., somewhat constricted immediately below lobes, the basal part forming a slender pseudostalk c. 7–8 mm. long; lobes 5, small, distant, ovate triangular subacute, gland dotted, c. 1 mm. across and 1 mm. tall; petals free, ovate oblong or ovate orbicular, pellucidly gland dotted, up to c. 2·5 mm. diam.; stamens numerous, filaments rather stout, subulate, minutely pitted, the outer ones reaching c. 2 mm. long, the inner ones with almost no filaments, anthers broadly elliptic, c. 0·2 mm. long, without connective gland; style stout, c. 4 mm. long, hardly reaching the calyx rim, stigmatic surface large and conspicuous; ovary 4-celled.

The elongate flowers with the apex of the calyx tube suddenly inflated and globose turbinate, the short stamens and the 4-celled ovary distinguish this species.

Perak: sine loc., Scortechini s.n., 181; Larut, Kunstler 3410, 300–500 feet, Kunstler 6759; Sungai Larut, Wray 3066; Chanderiang, within 100 feet, Kunstler 5651.

Negri Sembilan: Gunong Angsi, Forest Dept. FMS 23707.

Pahang: Raub, Forest Dept. FMS 22570; Cameron Highlands, SFN 22950 (Nur).

Distrib: Borneo, Java.

A tree. Twigs slender, the youngest 4-angled, the older terete, bark drying pale brown to reddish or greyish brown. Leaves coriaceous or thinly coriaceous, elliptic lanceolate to elliptic or elliptic oblong, sometimes slightly obovate, apex acuminate, often shortly and abruptly so, base narrowed, from c. 4·5 cm. to 12 cm. long and 1·5 cm. to 6 cm. broad, both surfaces drying brownish or yellowish brown, the lower black dotted; midrib impressed above, more or less elevate below and somewhat keeled; primary nerves rather
numerous and close together, from c. 15 to over 30 pairs in large leaves, less than 0.5 cm. apart, very slightly raised above and usually obscure, slightly raised below and very fine, usually distinct, occasionally obscure, joining a fine intramarginal nerve close to the recurved leaf margin, secondaries and reticulations less distinct than primaries below, or obscure; petiole 3–6 mm. long, channelled above.

Panicles terminal, rather short and broad and densely flowered, shorter than leaves, peduncles and branches rather slender, more or less 4-angled with pale brown or yellowish brown wrinkled bark when dry; *flowers* sessile, in twos, threes or clusters at the ends of the branches or often in threes, twos or solitary at the ends of short branchlets; *calyx* up to c. 1.3 cm. long, the upper part narrowly cupular in bud, c. 3–3.5 mm. long and 3 mm. across mouth, after anthesis widely conic-cupular, c. 5 mm. across mouth, constricted below the cupular part into a slender pseudostalk c. 10 mm. long, the whole tube rather coarsely wrinkled-tuberculate and sometimes with reddish gland dots; lobes 4 or 5, persistent, broadly ovate rounded, less than 1 mm. tall; *petals* calyptrate, but the outer one free or partially free; *stamens* numerous, filaments slender, up to 7–8 mm. long, anthers broadly ovate oblong, c. 0.4 mm. long, without connective gland; *style* stout, subulate, c. 7–8 mm. long; *ovary* 3- or 4-celled.

Fruit obconic-turbinate or obovoid, up to c. 2 cm. long, whole of apex deeply excavate, c. 6–7 mm. diam., bearing the remains of the calyx lobes. (The local material available has no developed seeds. Koorders and Valeton figure the fruit as much more broadly turbinate than in any fruiting collection from the Malay Peninsula and describe the seed as having folded and excavate inner cotyledon faces, with a long terete hypocotyle).

The five preceding species (*E. attenuata*, *E. rhamphiphylla*, *E. rugosa*, *E. fusticulifera* and *E. napiformis*) appear to form a closely inter-related group, characterised by the peg shaped flowers, the upper part of the calyx tube more or less suddenly expanded, the lower part forming a long fine pseudostalk. The following table shows the main distinguishing points within the group:

E. attenuata—Leaves thick, not oblanceolate, with almost invisible or faint venation, especially above; flowers c. 6–8 mm. long, calyx tube wrinkled and often conspicuously pustulate; bark papery flaky.

E. rhamphiphylla—Leaves thin, often oblanceolate, with fine but distinct venation raised on both surfaces; the acumen longer than in...
249

attenuata; flowers c. 1-3 cm. long, more abruptly expanded above ovary than in attenuata and the fruit larger.

E. rugosa—Leaves thick, usually larger than in attenuata or rhamphiphylla, primary nerves usually distinct below, not above; flowers c. 6–10 mm. long, calyx tube nearly smooth, gradually narrowed to base; bark not or only very slightly papery flaky.

E. fusticulifera—Flowers c. 1-3 cm. long, calyx tube globose turbinate above, very suddenly constricted below the inflated apex into a long slender pseudostalk.

E. napiformis—Venation fine, slightly raised below, obscure above; flowers very long, c. 1-3 cm., the upper part cupular after anthesis, calyx tube distinctly and roughly tuberculate.

PERAK: sine loc., Scortechini 2021; Pondok Tanjong Forest Reserve, Forest Dept. FMS 9788.
JOHORE: Mersing, Forest Dept. FMS 5927; Tempayan river, Ridley 13252.
SINGAPORE: Reservoir Jungle, SFN 29225, 30291 (Corner), Corner s.n.; Raffles College grounds, SFN 36293 (Nur).
Distrib: Borneo, Java, Philippines.

A tree reaching c. 21–22 m. tall, trunk fluted at base; bark very slightly scaly in small pieces, apparently smooth and entire at a distance, not pustulate, light pinkish fawn; inner bark rather thin, pallid fawn tan. Twigs rather stout, the youngest 4-angled with reddish brown bark, the older ones terete with greyish bark. Leaves coriaceous, lanceolate to elliptic or oblong elliptic, sometimes slightly obovate, apex shortly and bluntly acuminate or acute, base cuneate, variable in size, from c. 7-5 to 19 cm. long and 4 cm. to 8 cm. broad; both surfaces drying pale brown or yellowish brown to reddish brown, the upper darker, somewhat polished, closely and minutely punctate, lower surface dull, with minute, close, dark or concolorous pustulate glands; midrib rather shallowly and widely impressed.

Vol. XII. (1949).
Fig. 47. a, *E. virens*; b, *E. claviflora* var. Maingayi; c, *E. claviflora* var. leptalea.
above, prominent below, more or less pustulate; primary nerves 10–14 pairs, elevate on both surfaces and very distinct, usually 1–2 cm. apart, obliquely ascending or curving up rather irregularly to a very distinct irregularly looped intramarginal nerve 0·5–1·2 cm. from the leaf margin, with one or two fainter series of loops closer to the margin; secondaries and reticulations also raised on both surfaces and distinct, but less prominent than primaries; leaf margin often obscurely crenulate; petiole 1–2 cm. long.

Panicles terminal or from the uppermost axils, often clustered, rather densely flowered, always shorter than the leaves, peduncles and branches 4-angled, becoming very stout in fruit; flowers usually in threes at the ends of the branches or of short branchlets, on pedicels 2–5 mm. long, fragrant, greenish white; calyx 1·2–1·4 cm. long, narrowly funnel-shaped-fusiform, slightly but distinctly swollen about ovary; lobes 4, green, unequal, very broad and rounded, persistent and reflexed after anthesis, the 2 larger 5–6–8 mm. across and 2·5–4 mm. tall, the two smaller 4–5–6 mm. across and 1·8–2·5 mm. tall; petals 4, free, white flushed pale pink in centre, orbicular or ovate orbicular, c. 6–8 mm. diam., concave and rather thick textured, reflexed after anthesis and dropping with the stamens; stamens numerous, white, filaments slender, terete, reaching c. 2 cm. long, anthers oblong, 0·8–0·9 mm. long, connective gland small and inconspicuous; disc thick, outer margin white, pale orange yellow within; style subulate, much stouter than filaments, c. 2 cm. long; ovary 2-celled, multi.ovulate.

Fruit ovoid, c. 2 cm. long and 1·75 cm. diam., smooth, apex with deep excavation c. 5 mm. diam., fringed with enlarged persistent calyx lobes; pericarp fleshy, 2–3 mm. thick; seed c. 1·2 cm. diam., rather irregularly globose or obovoid, testa dark brown, thick, crustaceous, adhering closely to cotyledons; cotyledons pale, glistening, minutely gland dotted, nearly equal, side by side or superposed, inner faces more strongly gland dotted, almost plane or a little folded, attached to hypocotyle near centre by short broad stalks, the hypocotyle variable in length but not reaching periphery of seed. Germination hypogaeal, the shoot strongly red winged.

I have seen the type of Clavimyrtus virens Bl., and have no hesitation in reducing Duthie's species to it, although Blume's specimen is rather poor. King reduced Clavimyrtus virens to E. filiformis Duthie, but although some forms of the latter which have shorter pedicels than usual and in which the ventricose calyx tube is more pronounced, do have a superficial resemblance to E. virens, this species never has the characteristic long pedicels of E. filiformis.

Vol. XII. (1949).

Pahang: Track to Gunong Tahan, c. 1,000 feet, on ridge, SFN 31755 (Kiah).

Known only from the above collection.

A tree 6–7 m. tall. Twigs slender, terete, bark drying dull blackish brown or reddish brown. *Leaves* lanceolate or oblong lanceolate, 4–8 cm. × 1.25–2.5 cm., drying greenish or yellowish, apex long acuminate or almost caudate acuminate, acumen acute, base long narrowed; midrib sunk above, elevate below and conspicuous, otherwise the nervation visible only in young leaves and then indistinct or invisible above and faint below; *primary nerves* when visible c. 10 pairs, spaced, meeting in a very obscure intramarginal nerve close to the somewhat thickened leaf margin; petiole blackish brown, wrinkled, up to c. 5 mm. long.

Cymes short, axillary, condensed, sessile or nearly so, shorter than leaves; *flowers* sessile; *calyx* narrowly clavate, the limb slightly cyathiform, the tube long narrowed, contracted at base into a short pseudostalk, slightly ribbed and finely rugulose-pustulate, c. 1.25 mm. long including pseudostalk, which is c. 2–2.5 mm. long; lobes 4, broadly rounded, shallow, c. 0.4–0.5 mm. high; *petals* usually calyptate, or occasionally free, subpersistent; *stamens* up to 4–5 mm. long, filaments slender, anthers broadly elliptic or ovate, c. 0.5 mm. long and 0.3–0.4 mm. wide, connective gland inconspicuous; *style* c. 8 mm. long, rather stout, more or less cylindric or very slightly fusiform below; *ovary* 3- or 2-celled. *Fruit* unknown.

The inflorescence of this species is very like that of *E. claviflora*, but the flowers are shorter and stouter. The foliage resembles that of *E. attenuata*.

Gardens Bulletin, S.

Langkawi: sine loc., Forest Dept. FMS 20780; Gunong Raya, Forest Dept. FMS 6779; Telok Datal, SFN 7515 (Haniff & Nur).

Perlis: Besih Hangat, Ridley 15064.

Trengganu: Kuala Trengganu, SFN 15159 (Holttum), Corner s.n.

Penang: Muka Head, 500 feet, Curtis 749; seacoast, Curtis 697; Waterfall, Curtis s.n.; Batu Ferenghi road, Ridley 8393; Moniot's road, Ridley 7089; Waterfall Gardens, SFN 36575 (Ewart), Ewart s.n. (tree No. 605); sine loc., Stoleczka s.n.

Perak: Pulau Rumpia, Seimund s.n.; Lumut, Ridley 7954; Pangkor, Forest Dept. FMS 1750, Ridley 8384.

Pahang: Pulau Duchong, SFN 29857 (Corner); Putat Forest Reserve, Forest Dept. FMS 10792; Pahang East, Forest Dept. FMS 6751.

Singapore: Government House Domain, Ridley 11245, Addison s.n.; Labrador, Corner s.n.; Pasir Panjang, Corner s.n.

Distrib: Sikkim, Bengal, Assam, Burma, Indo-China, China, Siam, Anamba Islands, Borneo, Java, Philippines.

A medium sized to tall tree, trunk cylindric, often branched near base, with very small short buttresses; bark smooth or finely longitudinally creviced, occasionally peeling in small patches or becoming slightly fissured and somewhat flaky, with peculiar shallow oblique indentations like healed scars c. 2.5–5 cm. long, pale whitey grey; inner bark very hard and dry, dull vinaceous drab. Twigs slender, terete or somewhat compressed, with grey or brown, smooth or slightly flaky bark. Leaves thinly coriaceous, lanceolate or oblong lanceolate or narrowly elliptic or elliptic oblong, variable in size, from c. 7–22 cm. long and 3–8.5 cm. broad, apex shortly and often bluntly acuminate, or acute, base cuneate, both surfaces drying pale brown to pale reddish brown, the upper somewhat the darker, very minutely punctate, the lower sometimes with minute dark or colorous pustulations; midrib impressed above, prominent below; primary nerves from c. 12 to 25 pairs, irregular in spacing, from c. 3 mm. to 10 mm. apart, slightly raised and usually rather faint above, raised and fine below, distinct or very distinct, obliquely ascending or curving up, often branched, to a fine intramarginal nerve 1–2 mm. from leaf margin; secondaries and reticulations only a little less distinct than the primaries, the secondaries often difficult to distinguish from them; petiole usually less than 5 mm. long.

Vol. XII. (1949).
Flowers in very short condensed corymbs 2.5–5 cm. across, from the twigs below leaves, or axillary, sessile; calyx in bud narrowly cylindric clavate, 1.5–2.5 cm. long, trumpet shaped after anthesis, or the upper part of tube funnel shaped or cupular, c. 4–5 mm. across mouth, slightly constricted or gradually narrowed to base, with usually a short, slender, and not well defined pseudostalk, creamy white or greenish white tinged pink above; lobes 4 (? or 5), broadly ovate rounded or ovate triangular subacute, 1 mm. or less tall, persistent; petals white, falling in a calyptra but not or only partially aglutinated, ovate orbicular, thin, with a few obscure pellucid gland dots; stamens numerous, filaments slender, terete, reaching c. 9–10 mm. long, anthers oblong or elliptic oblong, 0.7–0.9 mm. long, without connec-
tive gland; margin of disc reddish pink; style stouter than filaments, subulate, glandular pubulate, c. 9 mm. long; ovary 3-celled (? or 2-celled).

Fruit when ripe broadly spindle shaped to ovoid or globose or oblong globose, up to c. 2 cm. long and nearly as broad, ripening from greenish pink through pink and dark red to purplish black; apex deeply excavate and fringed by the remains of the enlarged calyx lobes and bearing style remains; outer layer of pericarp juicy pulpy, nearly white, 2–3 mm. thick; a fibrous endocarp present which is distinct from the soft outer layer; the endocarp can be removed leaving the very thin brown testa on the seed, but in specimens preserved in alcohol the pulpy layer has shrunk and become firm and the whole of the pericarp peels off and brings with it the testa; seed 1, more or less obovoid, with truncate depressed apex with a deep narrow excavation, the margin of the truncate apex with raised vertical ridges extending some way down over the outer surface of the cotyledons; cotyledon surfaces very pale green, smooth and finely gland pitted, or pubulate, the cotyledons side by side with a vertical groove on one side following the commissure and filled with the thickened testa, the commissure on the other side just visible as a fine wavy line; cotyledons firmly locked together but not fused, so that it is possible to prise them apart, but usually with difficulty and with some fracturing of the tissues; inner faces pale, irregularly rugose with rounded depressions and projections fitting into one another. An irregularly branching dark brown structure occupies more than half the volume of the cotyledons and ramifies through their tissue. Whether or not this brown tissue is continuous with the testa and intrudes from the external groove has not been made out. No trace of radicle or plumule can be seen. On germination the radicle protrudes from the

Gardens Bulletin, S.
base of the seed, its tissue apparently continuous with that of the basal part of the seed. The cotyledons never separate, but remain as a solid mass until long after the seedling is well established.

As far as I can discover, Koorders and Valeton, in their description of *E. ruminata*, are the only authors to draw attention to the very curious structure of the seed of this species. They describe it as “Semina testa tenuis cum placenta intra cotyledones conferruminatas intus valde ruminatas intrusa”.

Roxburgh mentions that the fruit of *E. claviflora* is eaten in Chittagong. In Penang the ripe fruit is preserved as a pickle and known as *Buah Rumuyu*.

A much wider view is taken here of the species than by most other authors. As defined here it is a polymorphic and widely distributed group. To it should perhaps also be added *E. teretiflora* Koord. & Valet., which I have not seen. However, when fruit of all the various forms is obtained, a reclassification of them may be necessary.

Wight, Ic., tab. 530 almost certainly represents *E. claviflora*. It is certainly not *E. lanceolata* Lamk., a photograph of the type of which I have seen. Tab. 529, labelled *E. Wightiana* Wight, also represents *E. claviflora*. I have seen no very authentic material of *E. Wightiana*, but if the series of specimens so named in Herb. Dehra Dun is to relied upon, it differs.

Only rather poor material of *E. ruminata* Koord. & Valet. has been available, but this, along with the authors' description and figure, makes the reduction reasonable. The description and drawing of the fruit and seed of *E. ruminata* correspond very closely to the peculiar structure found in *E. claviflora*.

E. claviflora Roxb. var. *leptalea* (Craib) var. nov. (Fig. 47c).

Perlis: Bukit Lagi, Ridley 15065.

Pahang: Pramau, Pekan, Ridley 1019, 1109.

Distrib: Range of typical form.

Differs from the typical form in having the leaves broader in proportion to their length, and in the smaller flowers, c. 1 cm. long.

Fig. 48. *E. claviflora* var. *montana*.

Gardens Bulletin, S.
E. claviflora Roxb. var. excavata King, Mat. F.M.P., No. 12, 108 (1901). (Fig. 49c).

Penang: Sungai Telok Bahang, SFN 4560 (Burkill); Richmond Pool, Penang Hill, Ridley s.n.
Province Wellesley: Permatang Bertam, Ridley 6970.
Perak: Ulu Kendrong, Upper Perak, Forest Dept. FMS 11603; Bubu Forest Reserve, Forest Dept. FMS 29863, 30889; Larut, 500-1,000 feet, Kunstler 7440.
Penang: Sungai Telok Bahang, SFN 4560 (Burkill); Rotan Tunggal Forest Reserve, Forest Dept. FMS 28536.

? Singapore: "Victory Island", Hullett s.n.

Differs from the typical form in the rough bark of the twigs, the leaves usually longer and broader, the venation below more pronounced and the intramarginal nerve much more distinct.

E. claviflora Roxb. var. Maingayi King, Mat. F.M.P., No. 12, 108 (1901). E. Maingayi Duthie in Hook. fil., F.B.I., II, 484 (1878). E. claviflora Roxb. var. glandulosa King, loc. cit. (Fig. 47b).

Kelantan: Chabang Tongkat, Forest Dept. FMS 37847; Sungai Jera, Forest Dept. FMS 37824.
Penang: Government Hill, Maingay K.D. 750 (type collection of E. Maingayi Duthie).
Malacca: Mount Ophir, Hullett 780.
Johore: Ulu Kahang, c. 250 feet, SFN 10879 (Holtum); 13½ mile Mawai-Jemaluang road, SFN 31940 (Corner).

Distinguished by the acutely angled and winged young twigs, or twigs with corky fissured bark, thicker leaves and rather faint nerves. The Kelantan collections have rather smaller thinner leaves than the others, rounded and minutely cordate at base, not shortly and abruptly narrowed.

I have rearranged the varieties given by King in the Materials, for I believe that he included more than one form, including the typical one, under his var. excavata, and that var. glandulosa is not sufficiently distinct.

E. claviflora Roxb. var. riparia var. nov. (Fig. 49b, Fig. 50).

A typa foliis lineari-lanceolatis, ad 15 cm. longis et 1-5 cm. latis differt.

Pahang: Kuala Tahan, Seimund 927, TYPE collection, holotype in Herb. Singapore; Tahan river, Corner s.n.

A well marked narrow-leaved river bank form.

Vol. XII. (1949).
Fig. 49. a, *E. claviflora*; b, *E. claviflora* var. *riparia*; c, *E. claviflora* var. *excavata.*

Gardens Bulletin, S.
Fig. 50. *E. claviflora* var. *riparia*.

Del: CHAN YORK CHYE.

Vol. XII. (1949).
E. claviflora Roxb. var. montana var. nov. (Fig. 48).

A typa folia crassioribus, ramulis crassis angulatis, floribus interdum longioribus differt.

Kedah: Kedah Peak, *FMS Mus. 6019* (Robinson & Kloss).

Trengganu: Gunong Padang, 4,000 feet, *SFN 33914* (Moysey & Kiah), TYPE collection, holotype in Herb. Singapore.

Pahang: Wray’s Camp, Gunong Tahan, *Ridley 16273*.

Johore: Gunong Janeng, Lake & Kelsall 4076; Gunong Belumut, summit, *Holttum 98*.

The collections placed under this variety differ considerably amongst themselves. *Ridley 16273* has ovate or ovate lanceolate leaves with a cuneate base and distinct petiole, and flowers larger than the typical form. *Lake & Kelsall 4076* has oblong lanceolate leaves, rounded at the base and practically sessile, with flowers of the typical form. *FMS Mus. 6019* has oblong lanceolate leaves, narrowed at the base and shortly petiolate, with flowers of the typical form. *SFN 33914* has large ovate leaves with a broad base abruptly narrowed to a distinct stout petiole, and flowers larger than the typical form. *Holttum 98* has leaves rather like *SFN 33914*, but more narrowed to a rounded somewhat oblique base.

Of the five varieties enumerated here fruit of two only has been available—of var. Maingayi, of which *SFN 31940* is a fruiting collection in which the seed structure corresponds closely to that of the typical form; and of var. montana, of which *Holttum 98* is a fruiting collection in which, unfortunately, the seeds have been destroyed by insect larvae.

§ ACMENA—Anther cells globose, divaricate, opening by terminal slits; seed pseudomonocotyledonous.

Gardens Bulletin, S.
E. saligna C.B. Rob. in Philipp. Journ. Sci., Bot., IV, 392 (1909), non Jambosa saligna Miq. (Fig. 51a, Fig. 52).

Widespread in Malaya and fairly frequent, usually in lowland forest and secondary growth, but recorded from Cameron Highlands at about 4,500 feet.

Distrib: Assam. Tenasserim, Andaman Islands, Siam, South China, Sumatra, Bangka, Natuna Islands, Java, Borneo, Philippine Islands, Solomon Islands.

A medium sized to large tree, base of trunk sometimes stilt rooted; bark nearly smooth or slightly flaky or slightly fissured or rugose, not papery, pale brownish or pinkish fawn; inner bark thin, pale pinkish or pinkish fawn; wood yellowish. Youngest twigs slender, 4-angled, older ones terete, drying pale brown or reddish brown with smooth bark becoming slightly flaky. Leaves usually thinly coriaceous, lanceolate or oblong lanceolate, sometimes ovate lanceolate, apex caudate acuminate or long acuminate, the acumen usually long, narrow, and acute, base cuneate or narrowly acute, variable in size, usually c. 9 cm. × 3–4 cm., but varying from c. 5–13 cm. long and 1.5–5 cm. broad, upper surface smooth, drying greyish green or pale brown or pale reddish brown, minutely punctate, lower surface drying pale brown or reddish brown, sparsely black dotted; midrib impressed above, elevate below; primary nerves c. 8–15 pairs, slightly raised on both surfaces, usually faint above, faint or rather distinct, but fine below, from c. 3 mm. to 10 mm. apart, ascending rather irregularly and curving up to a fine intramarginal nerve 1–4 mm. from leaf margin, secondaries and reticulations usually faint or obscure, occasionally almost or quite as distinct as primaries; petiole drying dark and transversely wrinkled, up to c. 1 cm. long.

Panicles terminal or occasionally from upper axils, usually lax with many distant branches, reaching c. 12 cm. long, peduncle and divaricate branches slender, 4-angled, with longitudinally wrinkled pale bark when dry; flowers small, white, sessile, usually in threes, sometimes in twos or solitary, at the ends of the slender ultimate branchlets; calyx turbinate-clavate, c. 3–4 mm. long, the lower half suddenly contracted into a slender pseudostalk, the upper part after anthesis more or less cupular and c. 2 mm. across mouth; lobes 5, subpersistent, minute, broadly triangular acute; petals 4 or 5, free, erect, orbicular or oblong ovate c. 1 mm. tall; stamens numerous, the longest slightly less than 1 mm., filaments broad at base, anthers very small, c. 0.1 mm. across, the cells globose, divaricate, opening by terminal slits; style very stout, reaching or slightly exceeding the calyx rim; ovary 2-celled.

Vol. XII. (1949).
Fruit depressed globose, up to c. 2 cm. across, almost black when ripe, apical umbilicus c. 3–4 mm. diam., sunken, sometimes with remains of calyx lobes; pericarp fleshy, white; seed 1, when just beginning to germinate more or less depressed globose, semi-reniform, the brown semi-crustaceous testa still adhering closely to cotyledons. No commissure is visible and it is impossible to separate the cotyledons. When cut open the seed appears to be a solid mass of tissue with a dark brown mass ramifying through it, entering the cotyledons near the apex of the seed. There is no movement apart of the cotyledons on germination, and the seed is still a solid mass of tissue when the seedling is 10 cm. tall. The first scale leaves may be alternate, opposite, or the first pair opposite and the next alternate. One seedling had three alternate leaves, then an opposite pair.

The structure of the seed is similar to that of E. claviflora, carried further towards complete fusion of the cotyledons.

There is a considerable range of variation in the foliage characters of the specimens cited. Curtis 654 from Penang Hill and Forest Dept. FMS 32 from the Larut Hills have smaller more closely nerved leaves than the typical form and superficially look very like E. rhamphiphylla Craib, but the acute acumen of the leaf in E. Cumingiana would serve to distinguish these species if no flowers or fruit were available. The set of specimens from Cameron Highlands has much thicker, more coarsely nerved leaves with shorter and denser inflorescences. Merrill and Perry also draw attention to the variability in this widely distributed species, and in connection with their remarks on the leaves being not always truly opposite, it may be pointed out that this occurs in other species of Eugenia in the section Syzygium, especially on young twigs. In E. filiformis for example, it is possible occasionally to find a twig with all the leaves alternate.

C. B. Robinson reduces Jambosa saligna Miq. to this species, apparently without having seen Miquel’s specimen and relying on the synonymy given in Koorders and Valeton, Meded. Lands Plantent., XL, 155. I have seen Miquel’s type and agree with Craib and Merrill and Perry that it does not belong here.

A full discussion and synopsis is given by Merrill and Perry, loc. cit., of Acmena as a generic segregate from Eugenia, and a description of the curious seed structure which is characteristic of this section of the genus.

Gardens Bulletin, S.
Fig. 51. a, *E. Cumingiana*; b, c, *E. operculata*.

§ CLEISTOCALYX—Calyx calyptrate, the upper part falling as a lid.

Kedah: Kampong Naka, 100 feet, SFN 19801 (Holttum); Inchong Estate, 20 feet, SFN 36349 (Spare).

Penang: Penara Bukit, 1,000 feet, *Curtis 1444*.

Perak: sine loc., *Scortechini 306*; Matang, seacoast, *Wray 2725*; Dindings, *Ridley 8388*.

![Figure 52: *E. Cumingiana*.
Del: *Chan York Chye.*

Gardens Bulletin, S.
Selangor: Kuala Selangor, Forest Dept. FMS 43746; Klang river, Forest Dept. FMS 44010; Sungai Pelek, Sepang, Denny 58, s.n.

Pahang: Tembeling, SFN 21803 (Henderson).

Distrib: India, Burma, China, Indo-China, Siam, Sumatra, Java, Borneo, Philippines, ? Amboina, Australia.

Fig. 53. *E. operculata.*

Del: Chan York Chye.

A tree; bark almost smooth, finely creviced into small pieces, pale greyish brown, inner bark thick, pallid buff. Twigs slender, youngest compressed and grooved, somewhat pustulate, drying brown, older ones terete, drying greyish. Leaves thinly coriaceous, variable in shape, oblong lanceolate or elliptic lanceolate to ovate oblong, apex shortly and

Vol. XII. (1949).
bluntly acute or acuminate, base cuneate, from c. 9 cm. \(\times \) 3 cm. to 22 cm. \(\times \) 7 cm.; upper surface drying greenish brown to reddish brown, more or less shining, closely and minutely gland dotted, lower surface dull, usually pale brown, gland dotted or pustulate; midrib impressed above, elevate below, pustulate; primary nerves c. 8–15 pairs, distant (usually c. 1 cm. apart), slightly raised or channelled above, pale, distinct, elevate and distinct below, nearly straight or curving up to a rather fine intramarginal nerve 3–6 mm. from the leaf margin, with sometimes a further series of fainter loops nearer the margin; secondaries and lax reticulations very faint above, much less conspicuous below than the primaries; petiole up to c. 1.5 cm. long, channelled above.

Panicles from twigs below leaves, rarely terminal, reaching c. 8–10 cm. long (longer in fruit), pedunculate, trichotomous, lax, with long, distant, almost horizontal branches, they and the peduncle slender, more or less 4-angled; flowers green or yellow in bud, turning red, in threes at branchlet ends, sessile, or the centre flower of the triads occasionally shortly pedicellate; calyx in bud completely closed, obovate-globose apiculate, 4.5–5.5 mm. long, gland dotted, the upper part falling as a circumscissile, orbicular, conic, apiculate, gland dotted calyptra 3–3.5 mm. diam., after anthesis the calyx somewhat campanulate, the margin recurved, rather abruptly narrowed into a stout, tapering 4-angled pseudostalk c. 2 mm. long, the mouth truncate or irregularly wavy with the remains of the calyptra; petals apparently 4, adhering to the inside of the calyx calyptra and falling with it, but separable, oblone ovate or ovate orbicular, thin, conspicuously gland dotted, margins lacerate, 2–2.5 mm. diam.; stamens numerous, filaments slender, terete, sparsely glandular pustulate, up to c. 6 mm. long, anthers oblong elliptic, c. 0.4 mm. long, connective gland conspicuous; style much stouter than filaments, subulate, sparsely glandular, c. 10 mm. long; ovary 2- or 3-celled.

Fruit ovoid globose, c. 1 cm. long, ripening from white to bright red and finally dark red, with dark gland dots when dry, apex with a wide, deep excavation c. 4 mm. diam., fringed by the short calyx rim; seed 1, oblong globose, c. 7 mm. long, testa pithy-leathery, adhering closely to cotyledons; cotyledons side by side, nearly equal, subreniform, inner faces conspicuously gland dotted, excavate, interlocking by thin broad bands of tissue arising from the margins of the cotyledons on one side and curving inwards, and attached to the stout quadrangular conspicuously gland dotted hypocotyle which reaches the surface of the seed.

Gardens Bulletin, S.
Merrill and Perry, loc. cit., pp. 322–343, give an account of *Cleistocalyx* as a generic segregate from *Eugenia* and enumerate the species.

Calyx tube produced above disc, the stamens arising from its inner surface above the disc, the tube splitting longitudinally after the flower opens into several irregular lobes.

Calyx in bud c. 2.5 cm. × 1 cm., primary nerves c. 15 pairs, intramarginal nerve 0.5–0.7 cm. from margin

Calyx c. 4 cm. × 3 cm., primary nerves 18–25 pairs, intramarginal nerve 2–3 mm. from margin

These two species appear to be aberrant in *Eugenia* in the characters given above. So far as I can discover, the position of the stamens, scattered over the inner surface of the calyx tube above the disc, has not been described previously in *Myrtaceae*, and these plants might be better placed in a new genus. However, only rather scanty dried material has been available, and the flowers have become so hard and woody that a detailed and exact examination of them has been difficult. Apart from the flowers, no-one familiar with *Eugenia* would hesitate to place these plants in that genus.

137. *Eugenia Symingtoniana* Henderson in Gardens Bulletin, Singapore, XI, 333, fig. 17 (1947). (Fig. 54a).

PERAK: Sungai Sah, Kinta, Forest Dept. FMS 12721, 26055.

PAHANG: Bukit Goh Forest Reserve, Kuantan, Forest Dept. FMS 3139; Baloh, Kuantan, Forest Dept. FMS 3199; Gunong Rokam, Pulau Tioman, 2,500 feet, SFN 18779 (Nur).

TRENGGANU: Sungai Paka, Forest Dept. FMS 26723; Ulu Brang, c. 800 feet, SFN 33950 (Moysey & Kiah), specimen with immature fruits, identification doubtful.

A tree c. 3–13 m. tall. Twigs terete, smooth, drying whitish or greyish white. Leaves elliptic to elliptic oblong, occasionally oblong lanceolate, up to 20 cm. × 10 cm., apex abruptly short acuminate or sometimes abruptly caudate, base cuneate and more or less decurrent on petiole; primary nerves up to c. 15 pairs, 0.75–2 cm. distant, impressed above, prominent but not thick below, running nearly straight or

Vol. XII. (1949).
curving gently up to an intramarginal nerve 0.5–0.7 cm. from margin, a much fainter intramarginal c. 0.2 cm. from margin; secondaries and reticulations faint above, distinct below, reticulations rather lax; upper surface drying fuscous dull or greyish brown, lower a warmer reddish brown; petiole stout, up to c. 1 cm. long.

Flowers usually solitary or occasionally in pairs at ends of branches, sessile; calyx in bud subglobose to obovoid, c. 2.5 cm. long and 1 cm. wide when mature, more or less campanulate after anthesis, slightly swollen about ovary, constricted at base into a short stout pseudostalk; lobes ? 4, short, round, gland dotted; the tube splitting deeply after anthesis into several deep irregular triangular false lobes; petals ? 4, free, thin, suborbicular with a short broad claw, c. 5–6 mm. diam., apparently often subpersistent as are the calyx lobes, and adherent to the apices of the rolled back false calyx lobes; disc lining calyx tube to c. 0.5 cm. above ovary; stamens borne on the whole surface of the calyx tube above disc, the tube being produced c. 1 cm. above disc; filaments very numerous, slender, c. 1.5 cm. long; bases of the fallen stamens giving the inner surface of the rolled back false calyx lobes a tesselate appearance; anthers oblong, 0.6–0.7 mm. long, without conspicuous connective gland; ovary 2-celled, multiovulate.

Fruit apparently reaching c. 3 cm. diam., apex crowned with the remains of the calyx tube and recurved calyx lobes, c. 1.5 cm. diam.

138. Eugenia Watsoniana Henderson in Gardens Bulletin, Singapore, XI, 336, fig. 18 (1947). (Fig. 54b).

Selangor: Sungai Lallang Forest Reserve, Forest Dept. FMS 22928; Ranching Forest Reserve, Forest Dept. FMS 9563, 5795; Rantau Panjang Forest Reserve, Forest Dept. FMS 595.

A tree up to c. 10 m. tall. Twigs terete, with smooth or slightly flaky bark, almost white or greyish white. Leaves more or less coriaceous, narrowly elliptic to oblong elliptic, base narrowed, apex very abruptly and shortly acuminate or shortly acute, up to 20 cm. × 8 cm.; petiole rather stout, c. 1–1.5 cm. long, the lamina occasionally somewhat decurrent upon it; primary nerves 18–25 pairs, 0.75–1.5 cm. apart, more or less impressed above, prominent below but not thick, nearly straight or curving gently up to a well marked intramarginal nerve usually 2–3 mm. from leaf margin; secondaries and reticulations usually almost invisible above, not conspicuous below.

Flowers apparently solitary and terminal, sessile, large; calyx more or less campanulate, shortly narrowed at

Gardens Bulletin, S.
base to a very short stout pseudostalk, smooth or faintly longitudinally ribbed and thick and leathery in texture when dry, in mature bud c. 4 cm. long and 3 cm. across, lobes 4, short, broad and rounded, the calyx tube after anthesis splitting into 6 or 7 rather irregular lobes 1–1.5 cm. long; petals not seen; stamens very numerous, borne on the surface of the calyx tube above disc, filaments very slender, c. 1.5–2 cm. long, anthers oblong, c. 0.7 mm. long, connective gland inconspicuous; style stouter than filaments, c. 3 cm. long; ovary 2-celled below, 4-celled above, multiovulate.

Vol. XII. (1949).
Fruit globose or depressed globose, 5–6 cm. diam., smooth or very faintly vertically ribbed when dry, crowned by the massive remains of the calyx tube 6–9 mm. tall and c. 2 cm. diam., fringed by the recurved false calyx lobes; pericarp hard and woody when dry, 5–7 mm. thick, testa nearly 1 mm. thick; cotyledons nearly equal, probably sessile, their inner faces apparently almost plane or slightly concave, attached to the hypocotyle near their centres.

Closely allied to E. Symingtoniana but distinguished from it by the more numerous primary nerves of the leaf, the larger flowers and in the stamens arising from a smaller area of the calyx tube.

EXCLUDED AND ADDITIONAL SPECIES

Eugenia tetrahaedra (Miq.) Duthie in Hook. fil., F.B.I., II, 476 (1878).

Duthie identifies with Jambosa tetrahaedra Miq. a specimen collected by Griffith, and Maingay K.D. 732, both from Malacca. Maingay K.D. 732 in Herb. Kew is E. grandis Wight. Griffith K.D. 2370 in Herb. Calcutta is E. palembanica (Miq.) Merr. This sheet bears the following pencilled note: “Leaves exactly as in Jambosa? tetrahaedra Miq., but branches are here terete,” and is probably the specimen referred to by Duthie (loc. cit. p. 477) when he says “Kurz in an MS note in the Calcutta Herbarium suspects that this is the E. tetrahaedra of Miquel but with some hesitation on account of the terete branchlets”. I have examined a duplicate of the type of Jambosa tetrahaedra Miq. No Malayan material is referable to it. A cover in Herb. Calcutta bears the following pencilled note in King’s hand: “Duthie’s E. tetrahaedra F.B.I., II, 476 is E. lepidocarpa Wall.”.

Eugenia ciliaris Ridl., Kew Bull. (1928) 74.

Usually a small tree of conical shape, reaching c. 20 m. tall; twigs ascending, terete, smooth, greyish white. Leaves coriaceous, lanceolate or narrowly elliptic, sometimes narrowly obovate, up to 12 cm. × 4.5 cm., apex very shortly and broadly bluntly acuminate, base long narrowed, upper
surface glossy dark green, lower dull and paler; primary nerves over 20 pairs, irregularly spaced but usually less than 5 mm. apart, fine and translucent in the living leaf, intramarginal nerve fine, close to the somewhat wavy and recurved leaf margin; secondaries almost as distinct as primaries; petiole slender, up to c. 2-5 cm. long, the leaf blade decurrent upon it, the basal 5-6 mm. somewhat swollen and pinkish.

Panicles terminal, corymbose, trichotomous, shortly pedunculate or branched from base, shorter than leaves, few-many-flowered; flowers fragrant, usually in threes at branchlet ends, on stout variable pedicels, the centre flower of the triads usually on a much shorter pedicel than the outers; bracts and bracteoles narrow, acute, c. 2-3 mm. long, quickly caducous; calyx tube c. 1-1.5 cm. long, c. 5 mm. diam. below lobes, green in bud, cylindric, angled, base very slightly narrowed, without pseudostalk, flushed pink at anthesis and turning deep reddish pink after the stamens fall, lobes 4, narrowly ovate acute, fleshy, c. 3-4 mm. tall, erect and slightly incurved and green in bud, erect-spreading and pink after anthesis; petals 4, green, falling in a hemispherical calyptra c. 6 mm. diam. but not agglutinated and easily separable, orbicular, c. 6 mm. diam.; stamens very numerous, appearing grouped in 4 masses, arising from between the outer edge of the rather prominent narrow disc and the calyx tube, filaments nearly white, glandular pustulate, inner ones c. 3 mm. long, the longest outer ones reaching 9-10 mm., anthers yellow, ovate or ovate oblong, c. 0.5 mm. long, connective gland small, pale brown and inconspicuous; style very stout, swollen at base, very pale green and gland dotted, c. 4-4.5 mm. long; ovary 2-celled, multiovulate.

Fruit oblong, usually shortly tapered to each end, 2.5-3 cm. long, 1.3-1.5 cm. diam., apex with the 4 enlarged narrow fleshy calyx lobes incurved over and hiding the apical excavation; pericarp thin, pulpy fleshy, c. 2-3 mm. thick; seed 1, pinkish purple tinged green, with purplish testa, oblong, rounded at both ends, c. 2 cm. long; cotyledons side by side, inner faces gland dotted, excavate and folded and interlocking, attached near their centres to the large hypocotyle, which reaches the periphery of the seed at apex or base or midway; germination epigeal.

The clove tree, native of the Moluccas and nowadays cultivated in Malaya only to a limited extent, mostly in Penang.

Vol. XII. (1949).
NOTES ON THE SEED STRUCTURE OF SOME EXOTIC SPECIES OF EUGENIA.

E. apiculata DC. (Chilean). Seeds 1-3, in the 1-seeded fruits flattened, more or less reniform, c. 4.5-5 mm. long, testa thick, brown, adhering to but peeling easily from cotyledons; cotyledon surfaces dull green, gland dotted, the commissure along the narrow edge, cotyledons quite free, interlocking, attached to the large terete truncate hypocotyle close to periphery of seed.

E. bracteata Roxb. (E. Indian). Seed globose, c. 8 mm. diam., testa dark brown, thick, brittle-crustaceous; cotyledons smooth, pale yellowish brown, the commissure equatorial but not complete, the inner faces fused for about one-half or one-quarter of their area; cotyledons, including the free parts of the inner faces, covered with an exceedingly fine epidermis-like layer.

E. carissoides Muell. (Australian). Seed more or less globular, flattened, c. 1 cm. diam.; cotyledons partially fused together, sometimes round the periphery and free within, or fused for one-third or one-quarter of the area of the opposing faces.

E. cordata Laws. (S. African). Fruit oblong obovate, c. 2 cm. long, dark reddish purple when ripe; pericarp spongy-juicy, white. Testa usually persistent; cotyledons free, the inner faces slightly excavate, attached to the short hypocotyle by very short broad stalks. Often polymorphic.

E. costaricensis Berg. (Costa Rican). Seed flattened, horseshoe shaped, two blunt incurved points at one end; testa brown, adhering closely to cotyledons; cotyledons gland dotted, apparently completely fused.

E. cyanocarpa Muell. (Australian). Fruit somewhat oblong globose, c. 1 cm. long, apical umbilicus c. 5 mm. diam., rather deep with rather conspicuous calyx rim and more or less persistent calyx lobes, style base persistent; pericarp apparently pulpy; seed more or less globose, c. 7-8 mm. diam., testa thick, brown, leathery, not adhering strongly to cotyledons but not peeling with the pericarp; cotyledons free, somewhat unequal, side by side, conspicuously gland dotted, inner faces somewhat concave, not folded or interlocked, sessile, attached to hypocotyle near periphery.

E. Dombeyana DC. (Peruvian). Seeds flattened, more or less reniform, c. 1 cm. or more across, testa smooth, rather tough and leathery, not adhering closely to cotyledons; cotyledons smooth or slightly wrinkled, free only at one side and there interlocking, otherwise fused together.

Gardens Bulletin, S.
E. Luehmanni Muell. (Australian). Fruit more or less spindle shaped, c. 1-4 cm. long and 6–8 mm. diam.; seed irregularly globose, c. 5 mm. diam., with brownish leathery testa adhering closely to the more or less wrinkled and conspicuously gland dotted cotyledon surfaces; cotyledons more or less equal, attached by very broad, thin, triangular stalks to a long stout hypocotyle grooved on one side and reaching the periphery of the seed.

E. Michelii Lam. (S. American). Seed oblong or subreniform, cotyledons entirely or partially fused together. Germination hypogaeal.

E. supra-axillaris Spring. (Brasilian). Seed more or less globose, 5–6 mm. diam., testa rather thick and hard, adhering closely to cotyledons; cotyledons apparently completely fused together, no commissure visible, remaining as a solid mass of tissue until after the seedling is established.
LIST OF COLLECTORS’ NUMBERS.

ANDERSON—76: Muelleri.

BARNES—10869: spicata var. tenuiramis; 10882: subdecussata.

CANTLEY’S COLLECTOR—3128: tumida.

CLEMENS—30248: valdevenosa; 31300: pterophorum.

CUMING—2405: spicata.

Helferi; 3431: densiflora; 3435: syzygioides; 3440: glauca var. pseudoglauc; 3456: longiflora; 3475: pseudosubtilis; 3498: Duthieana; 3593: chlorantha; 3700: pseudosubtilis; 3731: syzygioides; 3758: caudata; 3807: chlorantha; 3827: Helferi.

Curtis's Collector—12707: cerasif ormis; 12721: Cumingiana; 12723: longiflora.

Diepenhorst—3083: avene.

Elmer—21223, 21237: pustulata; 21448, 21460: fastigiata; 21518, 21762: Kunstleri.

Federated Malay States Museums (FMS Mus.)—6019: claviflora var. montana; 6080: subdecussata var. montana; 7656: longiflora; 8023, 8307: Scortechinii; 9273: grata; 9365, 9485: pseudoformosa; 9488, 10488: subdecussata; 10604, 10687: pendens; 10769: pseudosubtilis; 11595: cerasiformis; 11696: Stapfiana; 12139: pahangensis; 12180: viridescens; 12244, 12249: pahangensis; 13181: spicata; 13183, 13185: oblata; 13186: grata.

Forest Department, Federated Malay States (Forest Dept. FMS)—20: tumida; 27: longiflora; 32: Cumingiana; 159: longiflora; 205: pseudosubtilis; 212: leptostemon; 257: Griffithii; 262: papillosa; 266: densiflora; 328: spicata; 343: Stapfiana; 363: filiformis; 368: variolosa; 381: filiformis; 457: variolosa; 472: microcalyx; 516: fastigiata; 550: palembanica; 572: microcalyx; 573: anisosepala; 573: horizontalis; 579: pergamentacea; 579: filiformis var. clavimyrtus; 580: subdecussata; 580: anisosepala; 595: Watsoniana; 596: leucoxylon; 623: polyantha; 641: Ridleyi; 682: longiflora; 802, 804: Cumingiana; 855: polyantha; 894: filiformis var. clavimyrtus; 905: longiflora; 913: fastigiata; 936: variolosa; 962: longiflora; 1010: subdecussata; 1128: filiformis var. clavimyrtus; 1139: subdecussata; 1217: tumida; 1223:
Bernardi; 1250: microcalyx; 1268: Dyeriana; 1416: grandis; 1576: perakensis; 1578: cerina; 1589: chlorantha; 1603: glauca var. pseudoglaucu; 1652: grata; 1682: grandis; 1750: claviflora; 1809: tumida; 1830: polyantha; 1879: longiflora; 1960: Ridleyi; 2053: Griffithii; 2058: longiflora; 2082a: pustulata; 2082b: Ridleyi; 2105: Griffithii; 2155: Griffithii; 2279: variolosa; 2283: tetraptera; 2287: valdevenosa; 2314. 2325: syzygioides; 2351: longiflora; 2358: grandis; 2407: longiflora; 2441: polyantha; 2633: chlorantha; 2671: polyantha; 2701: Cumingiana; 2704, 2772: grandis; 2787: densiflora var. angustifolia; 2798: cerasiformis; 2927: grandis; 2934: Scortechinii; 2939: filiformis var. clavimyrtus; 3022: tumida; 3024: chlorantha; 3026: syzygioides; 3028: longiflora; 3030: filiflora; 3130: filiformis; 3136: Symingtoniana; 3202: palembanica; 3202: Hemsleyana; 3302: papillosa; 3308: variolosa; 3345: syzygioides; 3615: cerina var. turbinata; 3618: grandis; 3624: densiflora var. angustifolia; 3702: cerasiformis; 3719: Symingtoniana; 3726: grandis; 3908: polyantha; 3912: Curtissia var. minor; 3914: pseudosubtilis; 4003, 4007: polyantha; 4028: Scortechinii var. cuneata; 4106: cerina var. turbinata; 4157: nitidula; 4185: grandis; 4208: cerina var. turbinata; 4210: oblongifolia; 4211: densiflora; 4494: Griffithii; 4582: longiflora; 4749: microcalyx; 4783: pallidula; 4892, 4902: microcalyx; 4962: grandis; 5113: microcalyx; 5191: fastigiata; 5302: leptostemon; 5385: filiformis; 5460: pseudosubtilis; 5667: Cumingiana; 5707: inophylla; 5750: perakensis; 5795: Watsoniana; 5927: virens; 6016: longiflora; 6057: polita; 6365: filiformis; 6392, 6407: microcalyx; 6435: grandis; 6439: Griffithii; 6439: valdevenosa; 6656: anisosepala; 6682: polita; 6691: grandis; 6751: claviflora; 6766: nigricans; 6779: claviflora; 7015: Griffithii; 7031: fastigiata; 7065: Griffithii; 7515a: grata; 7552: syzygioides; 7619: pachyphylla; 7623: polyantha; 7661, 7679: syzygioides; 7750: fastigiata; 7751: Curtissi var. Holtumii; 7796: pseudosubtilis var. montana; 7843: Dyeriana; 7950: filiformis var. clavimyrtus; 7972: fastigiata; 7988: Griffithii; 8040: leptostemon; 8128: nigricans; 8261: variolosa; 8262: Griffithii; 8264: Cumingiana; 8277: chlorantha; 8278: filiformis var. clavimyrtus; 8376: longiflora; 8536: Scortechinii; 8864: longiflora; 8866: microcalyx; 8971: pustulata; 8987: longiflora; 9021: anisosepala; 9036: oblata; 9355: filiformis; 9519: Cumingiana; 9563: Watsoniana; 9632: subdecussata var. montana; 9681: Dyeriana; 9717: pallidula; 9755:

Gardens Bulletin, S.

Vol. XII. (1949).
278

Gardens Bulletin, S.
Fox—32: Cumini; 11290: Muelleri; 12576: cerasitormis; 12726: microcalyx.

Fox's Collector—12576, 12684: oblata.

Franck—352: Muelleri.

Griffith (Kew Distribution ("K.D.") numbers. See note under Maingay)—2349: pendens; 2366: claviflora; 2368, 2369: grandis; 2369, 2370: palembanica; 2371: pachyphylla; 2375: Griffithii; 2376: palembanica; 2380: anisosepala; 2385: chlorantha; 2389: filiformis; 2390: longiflora; 2391: syzygioides; 2395: polyantha; 2405: Muelleri; 2410, 2411: microcalyx; 2416: glauca.

Haniff—3915: Wrayi; 15483: grata.

Harvey—21: tumida; 4994: tumida.

Henderson—1266: pustulata.

Holmberg—675: polyantha; 721: longiflora; 729: spicata; 782: tumida; 793: papillosa; 859: polita; 873: papillosa.

Holttum—3: ?rhomboidea; 58: cerina var. montana; 98: claviflora var. montana.

Kerr—17128: microcalyx var. irregularis; 21754: pseudosubtilis.

Kloss—25: Klossii; 103: leucoxylon.

Krukoff—3304, 4390: valdevenosa.

Kunstler (King's collector of some works)—18: longiflora; 713: leptostemon; 737: valdevenosa; 738: densiflora; 1172: Cumini; 1184: tumida; 1277: chlorantha; 1326: longiflora; 1368: attenuata; 1579: valdevenosa; 1771: oblata; 1793: pseudosubtilis; 1803: cerasiformis; 1863: tecta; 1901: chloroleuca; 1908, 2150, 2317: leptostemon; 2321: filiformis var. clavimyrtus; 2605:

Vol. XII. (1949).
fastigiata; 2686: pseudomollis; 2737: valdevenosa; 2796: variolosa; 2808: pseudomollis; 2813: papillosa; 2842: valdevenosa; 3310: Kunstleri; 3345: leptostemon; 3348: Scortechinii; 3349: Dyriana; 3401: pseudoformosa; 3407: Hoseana; 3410: napi-
formis; 3415: variolosa; 3422: pseudosyzygioides; 3475: cerina; 3491: Dyeriana; 3526: Pearsoniana;
3573: Dyriana; 3654: caudata; 3680: Kunstleri; 3724: pulstulata; 3752: subdecussata; 3782: cerina;
3966: Duthieana; 3995: variolosa; 4076, 4082: chlorantha; 4086, 4094: longiflora; 4132: fastigiata;
4181: Helferi; 4218: Duthieana; 4220: chlorantha; 4241: caudata; 4262: leptostemon; 4331: Cumingiana;
4346: cerasiformis; 4355: densiflora; 4405: longiflora; 4515: cerasiformis; 4541: garcinifolia; 4580: linoci-
oidae; 4674: spicata; 4682: densiflora; 4719: Burkilliana; 4734: Scortechinii; 4735: Cumingiana;
4741: inophylla; 4769: subdecussata; 4947: valde-
venosa; 4951: chloroleuca; 5122: valdevenosa; 5163:
subdecussata; 5208: syzygioides; 5266: setosa;
5298: Dyriana; 5309: Prainiana; 5322: valdeven-
osa; 5354: subdecussata; 5389: pseudoformosa;
5407: fastigiata; 5414, 5433: grata; 5447: setosa;
5483: cerasiformis; 5512: fastigiata; 5547: qua-
drata; 5572: pseudomollis; 5595: perakensis; 5601:
filiformis; 5618: chlorantha; 5641: fastigiata; 5651:
napiformis; 5721: densiflora; 5780: polita; 5822:
fastigiata; 5855: densiflora; 5861: filiformis; 5868:
densiflora; 5869: papillosa; 5904: spicata; 5925:
filiformis var. clavimyrtus; 5982: Griffithii; 5986:
microlax; 5988: longiflora; 5989: Griffithii; 5990:
microlax; 5994: camptophylla; 6012: oblongifolia;
6036: variolosa; 6079: inophylla; 6090: Griffithii;
6114: Hemsleyana; 6149; Curtisii; 6186: Burkilliana;
6192: Griffithii; 6196: Dyriana; 6202: setosa; 6208,
6233: Koordersiana; 6254: pseudoformosa; 6262:
caudata; 6267: grata; 6268: Duthieana; 6385:
Koordersiana; 6404: Dyriana; 6462: cerina; 6555:
inophylla; 6581: polyantha; 6584: Prainiana; 6600:
leptostemon; 6601: setosa; 6611: cerina; 6614:
polyantha; 6627: pseudosubtilis; 6665, 6682: leptoste-
mon; 6708: filiformis var. clavimyrtus; 6743: longi-
flora; 6758: pulstulata; 6759: napiformis; 6765:
chlorantha; 6767: Dyriana; 6793: setosa; 6822:
Dyriana; 6930: polita; 6937: cerina; 6946:
pseudosubtilis; 6965: rugosa; 6974: garcinifolia; 6997:
Dyriana; 7003: valdevenosa; 7055: cerasiformis;
7065: densiflora; 7216: spicata; 7306: Benjamina;

Gardens Bulletin, S.

Kurz—2933: spicata.

Lake & Kelsall—4076: claviflora var. montana; 4078: polita.

Maingay (Kew Distribution numbers (“K.D.”)) are given, as these are quoted in most works in preference to the collector’s own numbers. The same K.D. number was sometimes given to more than one collection and therefore occasionally to more than one species. In such cases Maingay’s own numbers are added)—718: spicata; 719: Muelleri (Maingay 1410 & 1411); 720: longiflora; 721: filiformis; 722: syzygioides; 723: grandis (Maingay 1682); 723: valdevenosa (Maingay 1682a); 724: syzygioides (Maingay 1412a & 1412b); 725: palebanica; 727: microcalyx; 728: polyantha; 729: Ridleyi; 730: grandis (Maingay 1416a & 1416b); 731: microcalyx (Maingay 1235 & 3058); 732: grandis; 733: chlorantha; 736: Scortechinii; 737: papillosa; 739: pseudocrenulata; 740: subdecussata; 741: Muelleri; 742: pachyphylla; 743: virens; 744: attenuata; 745: conglomerata; 746: oblongifolia; 747: pendens; 749: subdecussata; 750: claviflora var. Maingayi; 751: pustulata; 753: anisosepala (Maingay 1558); 755: laevicaulis (Maingay 3012); 754: Griffithii; 755: tumida; 757: grandis; 758, 760: densiflora; 762: valdevenosa; 770: fastigiata.

Vol. XII. (1949).

Gardens Bulletin, S.

Vol. XII. (1949).
16031: viridescens; 16032: tahanensis; 16266: tekuensis; 16273: claviflora var. montana; 16274: cyrtophylloides; 16275: viridescens; 16306: Wrayi; 16396: salictoides.

Ridley & Curtis—7952: chlorantha.

Ridley & Goodenough—1649: cerina.

Rubber Research Institute—22: grandis.

Seimund—105: grandis; 357: rugosa var. saxitana; 358: Wrayi; 446: Hemsleyana; 927: claviflora var. riparia.

Dyeriana; 11211: rugosa var. cordata; 11213: alyxi-folia; 11264: cerina var. montana; 11456: goniocalyx; 11775: jasminifolia; 11828: nigricans; 11866: poly-antha; 11993: jasminifolia; 12030: Graeme-Anderseniae; 12685: diospyrifolia; 12759: Duthieana; 12768: caudata; 12860: Griffithii; 13047: oblat.a; 13050: pseudosubtilis; 13151: spicata; 13224: Cumini; 14041: Duthieana; 14271: polyantha; 14335: inophylla; 14849: attenuata; 14924: filiformis; 15098: grata; 15159: claviflora; 15348: grata; 15544: syzygioides; 16352: rugosa; 16650: inophylla; 17113: spicata; 18039: nitidula; 18050: tetraptera var. pseudotetraperta; 18052: Dyeriana; 18566: pendens; 18779: Symingtoniana; 19629: densiflora var. angusti-folia; 19801: operculata; 19979: pseudoformosa; 20002: leptostemon; 20005: pauper; 20074: Bernardi; 20086: Hemsleyana; 20546: salictoides; 20665: pa-hangensis; 21068: tecta; 21803: operculata; 21196: Muelleri; 21815: papillosa; 21336: pseudosubtilis; 21401: syzygioides; 21405: Helferi; 21432: chlorantha; 21438, 21468, 21496: laevicaulis; 21548: oreophila; 21779, 21881: cerasiformis; 21887: Dyeriana; 22149: densiflora var. angustifolia; 22215: Dyeriana; 22355, 22476: densiflora var. angustifolia; 22605: densiflora var. angustifolia; 23559: attenuata var. montana; 23586: Wrayi; 23603: Dyeriana; 23825: Muelleri; 23897: cerina var. turbinita; 23908: Bernardi; 23977: densiflora var. angustifolia; 24110: Curtisii; 24114: cerina var. turbinita; 24124: spicata; 24139: Muelleri; 24448: cerina var. turbinita; 24549: Dyeriana; 24596: longiflora; 24635: pendens; 24750: Dyeriana; 24812: inophylla; 24929: spicata; 24973: Cumingiana; 25756, 25914: densiflora; 25925: densi-flora var. angustifolia; 25923: oblat.a; 26042: Muelleri; 26190: rugosa; 26869: Kunstleri; 27096: pterophorum; 28073: densiflora; 28078: pachyphylla; 28081: oleina; 28090: pseudocrenulata; 28144: leptostemon; 28327: valdevenosa; 28465: densiflora; 28497, 28522: nigricans; 28546: cerina; 28549: palembanica; 28557: leucocynylon; 28561: spicata; 28583: pseudosubtilis; 28622: Curtisii; 28637: longiflora; 28746: pseudosubtilis; 28806: pseudoformosa; 28846: Staphiana; 28907: ? orites; 28977: castanea; 28978: pauper; 28979: leptostemon; 29046: attenuata; 29049: cerina; 29225: virens; 29228: syzygioides; 29249: castanea; 29301: Kunstleri; 29312: longiflora; 29328: atroner-via; 29358: Ridleyi; 29368: conglomerata var. pan-i-culata; 29400: Kiahii; 29487: syzygioides; 29488:

Vol. XII. (1949).

Gardens Bulletin, S.

Teruya—3021: spicata.

Teysmann—3307: tetraptera; 3603: puncticulata.

Thomson—25: spicata.

Thwaites—160: calophyllifolia.

Walker—34: spicata; 38: Muelleri; 98, 150: palembanica.

Vol. XII. (1949):

WOODFORD—6417: longiflora.

WRAY & ROBINSON—5338: viridescens; 5454: pahangensis.
New varieties, new names, new combinations in **bold-faced** type, **synonyms in italics**.

Acmena:
- *acuminatissima* (Bl.) Merr. & Perry, 10, 280.

Calyptanthus:
- *caryophyllifolia* Bl., 154, 156.
- *fastigiata* Bl., 190.
- *floribunda* Bl., 190, 191.
- *pyrifolia* Bl., 161.

Caryophyllus:
- *antisepticus* Bl., 234.
- *aromatica* L., 270.
- *fastigiatus* Bl., 190.
- *floribundus* Bl., 190.

Clavimyrtus:
- *glabrata* Bl., 147, 148.
- *virens* Bl., 249, 251.

Cleistocalyx:
- *operculata* (Roxb.) Merr. & Perry, 264.

Decaspermum:
- *montanum* Ridl., 270.

Eugenia:
- *acuminatissima* Berg., 260.
- *acuminatissima* Kurz., 260.
- var. *parca* Merr., 150.
- *anisosepala* Duthie, 114, 115.
- *apiculata* DC., 2, 3, 272.
- *aqeua* Burm. f., 2, 53, 75.
- *aromatica* Kuntze, 7, 270.
- var. *montana* var. nov., 242.
- var. *ophirensis* var. nov., 241.
- *atrorervia* Henderson, 91.
- *auliculata* Ridl., 54.
- *avenis* (Miq.) comb. nov., 171, 172.
- *balsamea* Ridl., 211.
- *balsamea* Wight, 211.
- *bankensis* (Hassk.) Backer, 227.
- *Benjamina* King, 152, 154.
- *Bernardi* King, 138, 142.
- *borneensis* Miq., 204.
- *bracteolata* Wight, 190, 191.
- *Brantiana* Henderson, 145.
- *brevistyris* C. B. Rob., 257.
- *brunneoramea* Merr., 197.
- *Burkilliana* King, 116, 118.
- var. *garcinifolioidea* var. nov., 118.
- *camptophylla* Henderson, 149.
- *carissoides* Muell., 272.
- *caryophyllata* Thunb., 270.
- *castanea* Merr., 156.
- *cauliflora* Berg., 48.
- *cauliflora* DC., 48.
- *cerasiformis* (Bl.) DC., 196, 198.
- var. *montana* var. nov., 171.
- var. *turbinata* var. nov., 170.
- *chlorantha* Duthie, 107, 108.
- *chloroleuca* King, 189.
- *ciliraris* Ridl., 270.
- *cinerea* Kurz, 202, 204.
- *Clarkeana* King, 126, 128.
- *clavata* (Korth.) Merr., 252.
- *claviflora* Roxb., 7, 8, 10, 14, 252, 255, 262.
- var. *excavata* King, 257.
- var. *glandulosa* King, 257.
- var. *leptaea* (Craib) var. nov., 255.
- var. *leptantha* King, 255.
- var. *montana* var. nov., 260.
- var. *riparia* var. nov., 257.
- *clavimyrtus* Koord. & Valet., 147, 148
- *colorata* Duthie, 95.
- *confleriflora* Koord. & Valet., 190, 191.
- *conglomerata* Duthie, 7, 198.
- var. *paniculata* var. nov., 201.
- *cordinfolia* Ridl., 95, 124.
- *corrugata* King, 126, 128.
- *costaricensis* Berg., 272.
- *crenulata* Duthie, 216.
- *crenulata* Willd., 216.
- *Cumingiana* Vidal, 10, 14, 260, 262.
- *Cumini* (L.) Druce, 182.
- *cuprea* Koord. & Valet., 234.

Vol. XII. (1949).
Eugenia:

Curtisii King, 174, 176.

var. **Hollttumii** (Ridl.) var. nov., 176, 178.

var. minor King, 175, 178.

cyanoarpa Muell., 272.

cymosa Lamk., 154, 155, 156.

cymosa Wight, 154.

var. concinna King, 156.

cyrtophylloides Ridl., 167.

"densusflora Bl.", 78.

densiflora (Bl.) Miq., 73, 78, 133, 138.

var. angustifolia Ridl., 79, 82, 93.

diospyrifolia Duthie, 67, 70, 71.

var. lanceolata (Korth.) Craib, 69.

diospyrifolia Wall., 67.

dolichophylla Klaersk., 50.

dolichophylla Koorders Koold., & Valet., 50.

"doligophylla" Koord. & Valet., 50.

Dombeyana DC., 272.

Duthieana King, 118, 121.

Dyeriana King, 92, 126, 128, 130.

var. oblonga King, 126.

Elmeri Merr., 190, 191.

euneura Craib, 197.

Evansii Ridl., 197.

expansa Duthie, 196.

fastigiata (Bl.) Koord. & Valet., 190, 191.

filiformis Duthie, 145, 147, 251, 262.

var. **clavimyrtus** (Koord. & Valet.), var. nov., 147.

var. **parvifolia** Craib, 148.

filiformis Macfady., 148.

floseulifera Henderson, 7, 237.

formosa King, 69.

formosa Koord. & Valet., 70.

formosa Wall., 69.

Foxworthy Elmer, 79.

Foxworthyy Ridl., 79.

Foxworthiana Ridl., 79.

Fraseri Ridl., 253.

fusiformis Duthie, 249.

fusticulifera Ridl., 246, 248, 249.

Gageana King, 133.

garcinifolia King, 83, 118.

glabrata Berg., 147.

glabrata DC., 147.

glaucia King, 112.

var. pseudoglaucia King, 113.

glaucicalyx Merr., 233, 234.

Goodenovii King, 244.

Goodenovii King, *emend.*, 172.

goniocalyx Ridl., 165.

Graeme-Andersoniae Ridl., 111.

grandis Wight, 2, 87, 270.

grandis var. lepidocarpa Kurz, 86.

grata Wight, 233, 234.

Griffithii King, 115, 120, 121, 123.

Hamiffii Henderson, 139.

Hemsleyana King, 92, 129, 130, 132.

Hollttumii Ridl., 176.

Hoseana King, 103.

Hullettiana King, 107, 108.

inasensis King, 100, 102.

inearnata Elm., 168, 169, 170.

inophylla (DC.) Roxb., 138, 141, 142, 144, 145.

var. **Bernardi** (King) Ridl., 142.

irregularis Craib, 207.

jambolana Lamk., 182.

jamboloides Koord. & Valet., 196, 198.

Jambos Linn., 61, 62.

jasminifolia Ridl., 223, 225, 226.

javanica Lamk., 2, 74.

javenisi Koord. & Valet., 197, 198.

johorensis Ridl., 73, 244.

johorensis Ridl., 244.

jugualis Ridl., 61.

Junguhuani Miq., 211.

kemamanensis Henderson, 93.

Kiahii Henderson, 115.

var. **angustifolia** var. nov., 116.

kinaulaluensis Stapf, 230.

Klossii Ridl., 179.

Koordersiana King, 212, 214.

Kunstleri King, 209, 211.

laevicaulis Duthie, 115, 138.

lanceolata Lamk., 255.

laxiflora Koord. & Valet., 197.

laxinsula Ridl., 136, 137, 138.

lepidocarpa Kurz, 85.

leptalea Craib, 255.

leptantha Bentham, 255.

leptantha Wight, 255.

leptogyna C. B. Rob., 249

leptostemon (Korth.) Miq., 201.

leucoxylon (Korth.) Miq., 235.

var. **gracilior** Craib, 136.

lineata DC., 159.

lineata Duthie, 159, 198.

lincrioidea King, 163, 166.

longicalyx Ridl., 159.

longicuvida Ridl., 232.

longiflora (Presl) F. Vill., 159, 161, 165, 198.

Luehmanni Muell., 273.

Maingayi Duthie, 257.

malaccensis Linn., 2, 4, 46, 75.

malayana Gagnep., 50.

marivelaseus Merr., 159.

Michellii Lamk., 3, 7, 273.

microcalyx Corner, 207.

microcalyx Duthie, 204, 205.

var. **irregularis** (Craib) var. nov., 204, 207.

var. **obovata** King, 205.

Millisi Henderson, 92.

Miquelii Elm., 159.

mollis King, 75.

mollis Willd., 75.

Gardens Bulletin, S.
Eugenia:

- Molleyi Ridl., 244.
- myriantha King, 209.
- myrtiolia Cambess., 150.
- myrtiolia non Roxb., 3.
- myrtiolia Roxb., 150, 151.
- myrtiolia Salisb., 150.
- myrtiolia Sims, 150.
- napiformis Koord. & Valet., 241, 247, 248, 249.
- nemestrina Henderson, 192.
- nemoricola Ridl., 67.
- Ngadimaniana Henderson, 108.
- nigricans King, 194.
- nitida Duthie, 211.
- nitidissima Merr., 232.
- nitidula Ridl., 226, 230.
- oblatia Roxb., 136, 137, 138, 139, 140, 141, 142, 179.
- oblongifolia Duthie, 138, 184.
- var. parvifolia King, 184.
- var. robusta King, 138, 141, 142, 184.
- oleina Wight, 150, 194.
- operculata Roxb., 10, 264.
- oraeophila Ridl., 61.
- orites Ridl., 214.
- pachyphylla Kurz, 90.
- pahangensis Ridl., 101, 102.
- Fraserti var. nov., 101, 102.
- palembanica (Miq.) Merr., 85, 270.
- pallidula Ridl., 192.
- papillosa Duthie, 77.
- parva C. B. Rob., 150, 151.
- pauper Ridl., 175.
- Pearsoniana King, 134, 136.
- penangiana Duthie, 238, 241.
- pendens Duthie, 71, 180.
- perakensis King, 51, 55, 57.
- peramantacea King, 92, 130.
- perpuncticulata Merr., 188, 189.
- plumbea King, 63, 66.
- polita King, 221, 225, 226.
- polyantha Wight, 7, 211.
- var. sessilis var. nov., 212.
- porphyranthera Ridl., 59, 66.
- praestigiosa Henderson, 158.
- Prainiana King, 133, 136.
- var. Pearsoniana (King) Ridl., 134.
- pseudoclaviflora Henderson, 252.
- pseudocrenulata nom. nov., 216.
- pseudoflora King, 67, 69, 70, 71.
- pseudoglaucia Ridl., 113.
- pseudomollis nom. nov., 75.
- pseudosubtilis King, 146, 202, 244, 250, 209.
- var. montana var. nov., 205.
- var. platiphylla King, 202, 204, 205.
- var. subacuminata King, 202, 205.
- pseudosyzygioides Henderson, 157, 158.
- pseudotetrapetala King, 220.
- punctulata Miq., 169.
- punctulata F. M. Bailey, 168, 169.
- punctulata King, 168, 169.
- pustulata Duthie, 188, 211.
- pyrifolia Desv., 161.
- pyrifolia (Bl.) Duthie, 161.
- quadrata King, 55.
- quadribacteatia Henderson, 166.
- rhampiphylla Craib, 241, 242, 248, 262.
- rhododendrifolia Miq., 252.
- forma longifolia Miq., 252.
- rhomboidea Ridl., 80.
- Ridley King, 123, 125.
- rigid DC., 244.
- Robinsoniana Ridl., 197.
- Rostadosi Ridl., 65.
- rotata Craib, 201.
- rubricaulis (Miq.) Duthie, 159.
- rugosa (Korth.) Merr., 159, 174, 241, 244, 246, 248, 249.
- var. cordata var. nov., 246.
- var. saxitana (Ridl.) var. nov., 246.
- ruminata Koord. & Valet., 253, 255.
- salicetoides Ridl., 82.
- saligna C. B. Rob., 261.
- saxitana Ridl., 246.
- scalarinervis King, 57.
- scoparia Duthie, 171, 172.
- Scortechinii King, 66, 69, 71.
- var. cuneata var. nov., 67, 70, 71.
- var. parvifolia King, 66.
- selangoresis Ridl., 84, 85.
- setosa King, 176.
- siamensis Craib, 59.
- simulans King, 142, 159.
- sinubanensis Elm., 150, 151.
- var. tenuiramis (Miq.) var. nov., 230, 232.
- spissisofia Ridl., 235.
- Stapiflana King, 228.
- subdecussata Duthie, 2, 95, 97, 101.
- var. colorata King, 95.
- var. montana King, 97.
- subhorizontalis King, 124.
- subramosea Merr., 201.
- subruphi King, 120.
- var. robusta King, 120.
- supra-axillaris Spring, 73.
- Swettenhamiana King, 95.
- Swettenhamiana King, emend., 124.
- Symingtoniana Henderson, 267, 270.
- syzygioides (Miq.) comb. nov., 154, 157, 158.
- tahanensis Ridl., 102.
- taipingensis Henderson, 193.

Vol. XII. (1949).
Eugenia:
 tecta King, 223, 225, 226.
 tekuensis nom. nov., 48, 51.
 teretiflora Koord. & Valet., 255.
 tetrahaedra Duthie, 270.
 tetraptera (Miq.) comb. nov., 218,
 225, 226.
 var. **pseudotetraptera** (King) var.
 nov., 220, 221.
 Teysmannii (Miq.) Koord. & Valet.,
 159.
 Thumra Roxb., 123.
 var. penangiana King, 121.
 tiamanensis Ridl., 70, 71.
 trunciflora Berg., 49.
 trunciflora G. Don, 48.
 trunciflora Ridl., 48.
 tumida Duthie, 161, 163.
 uniflora L., 2.
 urceolata Cordem., 201.
 urceolata King, 201.
 valdevenosa Duthie, 180.
 Valedioniana King, 120.
 variolosa King, 105.
 venulosa Duthie, 186.
 var. **macrothyrsus** King, 186.
 verecunda Duthie, 235.
 var. **major** Ridl., 235.
 virens (Bl.) Koord. & Valet., 73, 249.
 viridissima Ridl., 97.
 viridifolia Elms., 253.
 Watsoniana Henderson, 268.
 Wightiana Wight, 255.
 Wrayi King, 98.
 zeylanica Wight, 231.
 zeylanica Wild., 231.
 Zippeliana Koord. & Valet., 197, 198.

Syzygium:
 albdirameum (Merr.) Merr. & Perry,
 209.
 antisepticum (Bl.) Merr. & Perry,
 234.
 apodum Miq., 97.
 aqueum (Burm. f.) Alston, 53.
 attenuatum (Miq.) Merr. & Perry, 238
 avene Miq., 171, 172.
 bankense (Hassk.) Merr. & Perry,
 227.
 campanulatum Korth., 152.
 castaneum (Merr.) Merr. & Perry, 156.
 cerasiforme (Bl.) Merr. & Perry, 196.
 chloranthum (Duthie) Merr. & Perry,
 107.
 clavatum (Korth.) Merr. & Perry, 252.
 claviflorum (Roxb.) Cowan & Cowan,
 252.
 concinnum Wall., 156.
 confertum (Korth.) Merr. & Perry,
 214.
 Cuminii (L.) Skeels, 182.
 Curtisii (King) Merr. & Perry, 174.
 euneuron Miq., 197,198.
 fastigiatum (Bl.) Merr. & Perry, 190.
 filiforme Wall., 145.
 Foxworthianum (Ridl.) Merr. &
 Perry, 79.
 fusiforme (Duthie) Merr. & Perry,
 249.
 fusticuliferum (Ridl.) Merr. & Perry,
 246.
 garcinifolium (King) Merr. & Perry,
 83.
 grande (Wight) Walp., 87.
 Griffithii (Duthie) Merr. & Perry, 120

Key to Species, 18.

Myrtus:
 acuminatissima Bl., 260.
 caudata Wall., 149.
 cerasiformis Bl., 196, 198.
 Cunini Linn., 182.
 densiflora Bl., 78.
 glabrata Bl., 147.
 lineata Bl., 159.
 lineata Sw., 159.
 sumarangensis Bl., 74.
 zeylanica Linn., 231.

Jambosa:
 attenuata Miq., 238.
 borneensis Miq., 252.
 cerasiformis Hassk., 198.
 clavata Korth., 252.
 confusa Bl., 50.
 densiflora DC., 78.
 glabrata DC., 147.
 insignis Bl., 50.
 Korthalsii Bl., 50.
 lanceolata Korth., 50.
 leptostemon Korth., 201.
 lineata DC., 159.
 puncticulata Miq., 169.
 "punctulata" Miq., 169.
 rubricaulis Miq., 159.
 saligna Miq., 261, 262.
 syzygioides Miq., 154, 156.
 tenuiramis Miq., 232.
 tetrahaedra Miq., 270.
 tetraptera Miq., 218, 220.
 Teysmannii Miq., 159.
 urceolata Korth., 201.

Gardens Bulletin, S.
Syzygium:

Hoseanum (King) Merr. & Perry, 103.
incarnatum Merr. & Perry, 168.
inophyllum DC., 141.
irregulare (Craib) Merr. & Perry, 207.
Jambos (L.) Alston, 62.
jaanicum Miq., 196.
leptanethum (Wight) Niedenz., 255.
leptostemon (Korth.) Merr. & Perry, 201.
leucocylon Korth., 235, 237.
lineatum (DC.) Merr. & Perry, 159.
longiflorum Presl, 159, 161.
malaccense (L.) Merr. & Perry, 46.
Muelleri Miq., 186.
myrtifolium (Roxb.) DC., 150.
nigricans (King) Merr. & Perry, 194.
nigropunctatum Merr. & Perry, 172.
oblatum Wall., 136.
oleinum Wall., 151.
operculatum (Roxb.) Niedenz., 264.
pachyphyllum (Kurz) Merr. & Perry, 90.
palmarianicum Miq., 85.
papillosum (Duthie) Merr. & Perry, 77.

perpuncticulatum (Merr.) Merr. & Perry, 188.
polyanthum (Wight) Walp., 211.
pseudoformosum (King) Merr. & Perry, 69.
pterophorum Merr. & Perry, 221.
punctulatum Wall., 169.
punctulatum Merr. & Perry, 78.
pyriformium (Bl.) DC., 161.
racemosum (Bl.) DC., 196.
rhamphiphyllum (Craib) C.E.C. Fischer, 242.
rigidum Wall., 174, 244.
rugosum Korth., 244.
samarangense (Bl.) Merr. & Perry, 74.
scoparium Wall., 171.
subdecussatum Wall., 95, 97.
syzgioides (Miq.) Merr. & Perry, 154.
verceolatum (Korth.) Merr. & Perry, 129, 130.
valdevenosum (Duthie) Merr. & Perry, 180.
venulosum Wall., 186.
verecundum Wall., 235.
viridifolium (Elmer) Merr. & Perry, 253.
zeylanicum (L.) DC., 231.

Vol. XII. (1949).
1. The Agricultural Bulletin of the Malay Peninsula (Old Series) nos. 1–9, 1891–1900 (out of print).

2. The Agricultural Bulletin of the Straits and F.M.S. (Second Series, monthly issues) Vols. 1–10, 1901–1911. Most numbers are available, price 50 cents each or $5 per volume.

 Vol. 1 nos. 1–5, January to May 1912 (as Agricul-
tural Bulletin of the Straits and F.M.S., Third Series); nos. 6–12, December 1913—March 1917 (as The Gardens Bulletin, S.S.).
 Vol. 2 nos. 1–12, July 1918—August 1921.
 Vol. 3 nos. 1–12, August 1923—March 1925.
 Vol. 4 nos. 1–12, June 1926—January 1929.
 Vol. 5 nos. 1–12, August 1929—June 1932.
 Vol. 7 parts 1–3, September 1932—June 1934.
 Vol. 8 parts 1–4, October 1934—October 1935.
 Vol. 9 parts 1–4, December 1935—March 1938.
 Vol. 10 parts 1 and 2, January 1939—August, 1939.
 Vol. 11 parts 1–3, May 1939—August 1941.

 Vol. 11 part 4, September 1947.
 The above former issues of the Gardens Bulletin may be purchased from the Botanic Gardens, Singapore, at $5 per volume or 50 cents per number for vols. 1–5 (Vol. 6, of 15 numbers, $7.50); in some cases two or more numbers were published together. Vols. 7–11 are published at $8 per volume; the prices of parts vary according to their size. The parts are published at irregular intervals, as material is available.

 Subscriptions per volume, payable in advance, $12.50 in Malaya, $13/- or $30/- outside Malaya.
THE
GARDENS' BULLETIN
SINGAPORE

Vol. XII 7th December, 1949 Part 2

CONTENTS

Gregarious Flowering of the Terrestrial Orchid Bromheadia Finlaysoniana by R. E. Holttum 295
The Selection of Type-Species of Some Old Genera of Ferns by R. E. Holttum 303
The Status of Botanical Literature Published before 1753 by R. E. Holttum and C. X. Furtado 307
A Further Commentary on the Rules of Nomenclature by C. X. Furtado 311
Palmae Malesicae—X, The Malayan Species of Salacca by C. X. Furtado 378
William Farquhar's Drawings of Malacca Plants by I. H. Burkill . 404
Flora Malesiana—Review 408

To be purchased at the Botanic Gardens, Singapore.
Price $4.00

Published by Authority
Printed at the Government Printing Office, Singapore,
by V. C. G. Gatrell, Government Printer.
1949
GREGARIOUS FLOWERING OF THE TERRESTRIAL ORCHID BROMHEADIA FINLAYSONIANA

By R. E. Holttum

It is well known that certain epiphytic orchids flower gregariously. Several authors have made detailed observations of the behaviour of the species *Dendrobium crumenatum*, which is one of the commonest orchids in Malaya, occurring on nearly every old tree and producing a beautiful but short-lived display of fragrant white flowers several times during the year. Other less common species of Dendrobium behave similarly. The flower buds of these plants develop underneath their protecting bracts to a stage at which all parts are formed, and then rest, sometimes for some weeks, before entering upon their final period of growth, which ends in flowering after a definite number of days. The stimulus which causes the buds to resume growth appears to be an unusually prolonged cool period, of a temperature comparable to that of normal night temperature. The literature concerned is fully cited by Kerling (1941).

Other orchids besides Dendrobiums behave in this way (and indeed the phenomenon is not confined to orchids, as the behaviour of Zephyranthes, investigated by Kerling, is essentially similar). The species *Bromheadia alticola*, belonging to a rather isolated and peculiar genus of Western Malaysia, has an elongating inflorescence of conspicuous 2-ranked bracts, which thus appears very different from that of *Dendrobium crumenatum*, but its flower-buds rest in a similar manner and respond to cool temperature in the same way, opening their flowers a day before *D. crumenatum*. There is a very common terrestrial species of Bromheadia which has indications of a gregarious flowering, but its behaviour is so different from that of the
other orchids already mentioned that I was doubtful if it could be a response to the same kind of stimulus. The results of my investigations of this terrestrial Bromheadia are here reported, and they are interesting as indicating a behaviour mid-way between uninhibited flowering and the peculiar condition of Dendrobium crumenatum.

Bromheadia finlaysoniana is very common in the scrubby vegetation which develops in Singapore on land that has been cleared and abandoned. It grows in association with Gleichenia, Nepenthes, Gahnia tristis, Melastoma, Wormia suffruticosa etc. The soil is often a hard compacted clay and it takes a considerable time for a vegetation of trees to develop. The plants of the long-persistent scrub are exposed to full sun, and most of them have tough leaves. The roots of the Bromheadia are close to the surface of the soil, so that they must soon feel the effect of dry weather, though they are protected by the shade of the other plants around them. A week without rain in Singapore is a dry period; two weeks is very dry; three weeks very rare. A few days without rain under the tropic sun are a strain on most plants which have not a deep soil to supply their roots with water.

Plants of Bromheadia finlaysoniana have erect leafy stems two or three feet high, with a terminal inflorescence. The floral bracts alternate in close succession, and the inflorescence continues to elongate for several months; its tip commonly bears three flower buds at different stages of development (Fig. 1). Each bud takes 20–30 days to flowering from the time when it is first visible beyond its bract; the interval between the times of opening of successive buds varies considerably. Each flower lasts one day only.

If the inflorescences and their buds on all the plants continued to grow at a uniform rate, one would expect a random flowering, with no great differences in the number of flowers to be seen on different days. But when we grew a number of Bromheadia plants together in one bed at the Botanic Gardens, we found that at irregular intervals of about 6–12 days there were a considerable number of flowers open together (the number varying much on different occasions) with few flowers on other days. It seemed that there was some influence at work causing gregarious flowering of an irregular nature, even though all buds appeared to be developing continuously. In order to understand the matter better, I measured the lengths of buds on selected inflorescences daily over a period of several months. I did this in 1940, the plants measured being grown in pots

Gardens Bulletin, S.
Fig. 1. On left, one complete stem of *B. finlaysoniana*, $\times \frac{1}{4}$. On right, inflorescence with 3 flower-buds at different stages ($\times 2$) and an open flower ($\times 1$).

and watered daily (except as noted below) and again in 1948 on some plants growing in a bed and receiving no water except rain.

In 1940 I measured 32 buds from their earliest visible stage to flowering, on five inflorescences (a few other buds fell prematurely). The time of development varied from 20 to 30 days, the mean time for buds on separate inflorescences varying from 24.5 to 25.5 days. The measurements were made to the nearest half millimetre, and included the total length of the bud with its ovary and short pedicel. Each bud showed an accelerated rate of growth, with a maximum on the last day, in which the increase in length was usually more than a centimetre. The measurements of 1948 gave similar results. In all, seventy-one flowers were measured over their complete development, on six inflorescences. The extreme periods of development were 19 and 34 days, the mean was 24 days.

When measurements of length of individual buds were plotted graphically, it was seen that some of them formed an even curve, showing a steady acceleration, while others showed retardation in part of the curve. The retardation usually occurred at lengths of 13 to 20 mm., and sooner or later gave way to normal accelerated growth for the six days prior to opening of the flower. It is thus evident that if several buds with retarded growth resumed normal accelerated growth at the same time, they might all flower simultaneously. In this way, buds which started to grow on different days might flower together (fig. 2). There can be no doubt that such retardation and subsequent resumption of normal growth is the cause of the gregarious flowering.

Two questions now arise. What causes the retardation of normal accelerated growth? And what causes the resumption of such growth after retardation?

My observations lead to the conclusion that there is not one single cause of retardation, and there is need of much further investigation before the matter can be fully understood. The following facts have a bearing on the matter.

In 1940, a potted plant under observation had its roots much exposed, owing to wash from heavy rain. I thought to help the plant by adding a little burnt earth (the usual potting soil) to cover the exposed roots, but this had a contrary effect. The plant (which had only one inflorescence) responded in a remarkable way. A flower-bud, which had attained 15 mm. in length and was developing normally, ceased growth on the day after the extra earth was added, and made no further growth, persisting 22 days before falling. A smaller bud, 5 mm. long, ceased growth and fell after only one day. This is clear evidence of a

Gardens Bulletin, S.
Fig. 2. Graphs showing growth of six flower-buds to the day before flowering. The left-hand group flowered on 17th February, the right-hand group on 28th February. Letters refer to the inflorescences on which the buds were borne; the first and last of the six buds were both on inflorescence A.

Vol. XII. (1929).
close association between root activity and flower-bud development. The roots were evidently injured in some way by the added earth; whether merely by depriving them of necessary exposure to the air, or by some directly harmful chemical effect.

Another pot was moved to a place where it was sheltered from rain (in good bright light, but not direct sunlight) and watering was stopped for 14 days. At the time watering ceased, 9 buds were developing. Of these, the four largest (one on each inflorescence) all flowered normally 2–7 days later. Two others, which were 5.0 and 5.5 mm. long when watering was stopped, grew to full development but failed to open; their final accelerated phase was less steep than normal, and their final size about two-thirds normal. A bud 4 mm. long grew about normally to 13 mm., and then grew less than another millimetre in five days, after which watering was resumed and normal accelerated growth to flowering occurred. A bud only 1.5 mm. long grew normally to 4 mm., remained at about this length for five days, and then resumed normal growth when watering was started again. There is no doubt that lack of water can cause retardation of growth, but also that accelerated growth (though of reduced amount) can occur even if water is seriously deficient.

In 1948 the plants were in a close group in the open ground, and were not watered. The month of February, 1948 was very wet throughout. Yet a number of buds showed retarded growth. It is well known that orchid plants resent unduly wet conditions (which prevent normal aeration of the roots) and I can only suppose that undue wet causes upset of normal root functions with consequent effect on flower buds. But this matter needs more experimental investigation. Retardation at later periods occurred in dry weather, but not always. The effect of drought on the root is not to be measured merely in terms of rainfall or its lack; it depends on many other factors, such as wind, atmospheric humidity, and duration of bright sunlight, and is difficult to assess.

Our other question seems to have a more definite answer. I have found that on every occasion when a considerable number of flowers were open on the same day (12 flowers or more, on about 30 inflorescences) the seventh day previous was decidedly cooler than average as judged by a thermograph record. I have not made any definite measurements of these records. Something more is needed than a comparison of maximum temperature, which may be of short duration. There was sometimes a sudden cooling due to a storm, such as that mentioned by Coster (1926),

Gardens Bulletin, S.
but not always, and sudden cooling is certainly not essential. The results agree with those of Kerling already mentioned for Zephyranthes and Dendrobium.

It seems then that flower-buds of *Bromheadia finlaysoniana* grow to about 12 mm. in length, and then for the next week or so are susceptible to retarding influences which may extend over a period of as much as eight days but usually over a lesser period. When the plant experiences the next unusually cool day, the normal accelerated development begins, and flowering occurs on the seventh day. Under normal conditions, the retardation does not amount to a cessation of growth, but such might occur (as in the unwatered pot) under exceptionally dry conditions.

It is not a big step from such a condition to that of *Dendrobium crumenatum*, in which growth ceases altogether at a certain stage of development, to be resumed as a result of a cool-temperature stimulus. The significance of the cool temperature stimulus probably is that such temperatures are usually associated with wet days; and water is necessary for the rapid later stages of development of flower-buds. (In Zephyranthes it has been shown that both cool temperature and water are necessary as a stimulus to growth of dormant flower-buds). The terrestrial Bromheadia is somewhat better off as regards water supply than the epiphytic Dendrobium, so that a total cessation of growth of buds until rain comes may be unnecessary. The Bromheadia is evidently also sensitive to a less pronounced cool-temperature stimulus.

All other species of Bromheadia except one are epiphytic, and it seems possible that *B. finlaysoniana* is “secondarily” terrestrial; *i.e.* that it is derived from epiphytic ancestors. Its roots are of epiphytic type. Whether under such circumstances its behaviour as regards bud-development could be a regression from the epiphytic condition (shown by *B. alticola*) or whether it is an arrested stage of evolution, is an interesting matter for speculation.

Some buds of *Bromheadia finlaysoniana* develop quite evenly, with no trace of retardation. Whether a bud always does this if root conditions are satisfactory, or whether such buds always experience a cool day at the right stage of their development, is a matter for further observation. The whole behaviour of flowering in this species is an indication of extreme sensitiveness to external conditions, and is an interesting example of how plants in our apparently very uniform climate can respond to small climatic changes.

Vol. XII. (1949).
BIBLIOGRAPHY

Gardens Bulletin, S.
THE SELECTION OF TYPE-SPECIES OF SOME OLD GENERA OF FERNS
By R. E. Holttum

Some early genera of ferns are so heterogeneous that the authors cannot have had clear ideas in founding them. It is sometimes possible to exclude certain species as not conforming to the author's generic description, but it is often not possible to say that one species rather than another is clearly indicated by that description. The generic description is thus not an infallible guide in the selection of a type-species.

The usual procedure has been to follow the first author who divides a genus. The process may be repeated more than once. Often the authors who split genera did not indicate a type-species; one can only agree that the type-species must be contained in that part of the original genus which is retained under the original generic name.

It may occur that subsequent authors in dividing a genus do not pay attention to the original generic description, and so may retain under the original generic name a species that does not well agree with that description, removing all others to another genus or genera. In such cases it may seem reasonable to select a new type-species of the original genus. But if (as often happens) none of the original species correspond uniquely to the description, there may well be difference of opinion as to which species most nearly corresponds to it. The result will be confusion.

I suggest that, in the interests of uniformity of nomenclature, it is better to follow the first divider of a genus, even though he may not select (by implication or otherwise) a type-species that most nearly corresponds to the original description. This may not be ideal arrangement; but in practice no ideal arrangement is possible, and I suggest that it is better to follow a definite rule rather than an indefinite one which will allow of differences of opinion and, as a result, confusion of nomenclature. On the other hand, there should certainly be a recommendation that a later author, in dividing a genus, should principally consider the generic description when selecting a type-species.

Linnean genera can be treated like any others, having regard to the convention that the species described in 1753 are associated with the generic descriptions of 1754, and to the rule that legitimate nomenclature begins in 1753 (art. 20).

Vol. XII. (1949).
I apply these principles to the names of certain fern genera as follows:

1. **Pteropsis** Desv. 1827.

This genus included five different genera, by modern standards. The species which most nearly agrees with the original generic description is *Pteropsis scolopendrina*, which is a Vittaria (an earlier genus). It is therefore reasonable to regard Pteropsis as a synonym of Vittaria, and this is actually the effect of the action of the botanists who have in succession removed from Pteropsis the following: Drymoglossum Presl (1836), Paltonium Presl (1849), Eschatogramme Trevisan (1851), Ananthacorus Und. & Maxon (1908). I see no reason why *Pteropsis piloselloides* should be chosen as type-species of Pteropsis. It does not well agree with the generic description, and after Presl separated it in 1836 no botanist appears to have restored it to Pteropsis until Underwood and Maxon in 1908.

2. **Trichomanes** Linn. 1753.

In Species Plantarum 1753 eleven species are included in this genus. The generic description of 1754 would apply equally to *T. crispum* and to *T. scandens*, and there is nothing in the publications of 1753 and 1754 which would indicate one rather than the other as type-species of the genus.

The 19th century botanists who subdivided Trichomanes all agreed in leaving in it *T. scandens* and its near allies. Moreover, these are admitted by Copeland to represent a primitive and unspecialized section of the genus Trichomanes *sens. lat.*

But Copeland in 1937 (Philip. Journ. Sci. 67: 51) proposed a new generic name Vandenboschia for *T. scandens* and its near allies, on the ground that the type-species of Trichomanes is *T. crispum*, which he considers to typify a genus distinct from *T. scandens*. The reason for the selection of *T. crispum* as type-species is that it was the first species described as Trichomanes by Linnaeus, in 1737. But legitimate botanical nomenclature begins in 1753, and there is nothing in the Rules which instructs us to refer to earlier literature. We are in fact referred to generic descriptions of 1754. It is true that in the case of Trichomanes, reference to an earlier work gives us a single original species of our genus. But it would not always do so; and the obligation to search all literature earlier than 1753 in order to find the first species in each genus as understood by Linnaeus in 1753 would not only add greatly to the present amount of purely bibliographical work of taxonomists; it would also present many new problems which

Gardens Bulletin, S.
would allow of differences of opinion. The result would not be conducive to stability of nomenclature, and would involve the expenditure of much effort which would be better directed to the study of the plants themselves.

I therefore contend that the type-species of Trichomanes should be *T. scandens*, not *T. crispum*, and that the generic name Vandenboschia Copel. is superfluous.

3. **Belvisia** Mirbel 1802.

When originally describing this genus, Mirbel discussed its relation to Blechnum, to *Pteris* and to *Asplenium septentrionale*. All species included by Mirbel in his new genus, except *B. spicata*, had compound leaves, and from his discussion it is clear that he regarded *B. spicata* as an aberrant member of the genus. *B. spicata* is however the only species left in Belvisia after the other species have been removed to the older genera Blechnum, *Pteris* and *Asplenium*. Therefore, though it does not agree best with the generic description, I agree to accept it as the type-species of the genus.

As the name Hymenolepis Kaulf. is illegitimate, being a later homonym of Hymenolepis Cassini, Belvisia takes its place, being the next generic name in order of priority.

4. **Thelypteris** Schmidel 1762.

Copeland, in *Gen. Fil.* pp. 135–136, rejects Thelypteris on the ground that it was not validly published by Schmidel. Alston had previously commented as follows on this subject (Kew Bull. 1932: 309):

> It has been argued (Mackenzie in *Am. Fern Journ.* XVII, 117–119) that Schmidel was making use of a uninomial nomenclature; this is clearly untrue, as he uses the name Commelina for three distinct species. That Schmidel regarded his names as generic is clear from p. 104 where he speaks of Micheli’s genus *Sphaerocarpus*. That Schmidel considered his genera to be published is apparent from his proposal of a new genus (*Tegamum*, p. 67).

Copeland objects that Schmidel’s name *Thelypteris non ramosa* distinguishes it “not from *Acrostichum* of Linnaeus but from the older Thelypteris which we know as *Pteridium*”. Schmidel was in fact reviving a genus published by Ruppius in 1718. The two species in that genus were *T. dioscoridis* (= *Pteridium aquilinum*) and *T. palustris non ramosa*. Neither belongs to *Acrostichum*, and there was nothing wrong in Schmidel maintaining a genus for them; the fact that we now consider them to belong to two different genera is irrelevant. Schmidel

published a long description and an excellent plate. It is a better basis than that of many fern genera, and I consider it to be valid.

5. Ctenopteris (Blume) Kunze 1846.

The name Ctenopteris was published by Blume in 1828, in a conspectus of the sections of the genus Polypodium. The preceding section (Goniophlebium) is clearly indicated as such; but of Ctenopteris Blume remarks that it is sufficiently distinct to warrant separation as a genus. He does not however make the separation, nor use the name Ctenopteris when later describing the species concerned. It is clear therefore that he was in effect describing a section of Polypodium, not a new genus. The first author to take up Blume’s name and to publish binomials under it was Kunze (*Bot. Zeit.* 4: 425. 1846). Kunze did not describe the genus, but referred to Blume’s description, so validating Ctenopteris as a generic name.

Different authors would define differently the limits of Ctenopteris. In Blume’s original list are species with both superficial and immersed sori; and one of the latter (*C. venulosa*, type also of Cryptosorus Fée) is chosen by Copeland as the type-species. It may be contended that there is no sharp distinction between *C. venulosa* and the genus Prosaptia Presl (1836). It is also clear that Xiphopteris Kaulf. (1820) is a closely allied genus which might not unnaturally be united to Ctenopteris. (J. Smith placed *Polypodium trichomanoides*, which is a Xiphopteris, in Ctenopteris).

I consider that, if Ctenopteris, Prosaptia and Xiphopteris are united, Ctenopteris is the most appropriate name, Xiphopteris and Prosaptia referring to special characters not shared by the whole group. I have therefore proposed the conservation of Ctenopteris to have precedence over Xiphopteris and Prosaptia whenever either of these is united to Ctenopteris as typified by *C. venulosa* (Bl.) Kunze.

Gardens Bulletin, S.
THE STATUS OF BOTANICAL LITERATURE PUBLISHED BEFORE 1753

By R. E. HOLTUM and C. X. FURTADO

In a recent paper, Chatterjee (1) criticizes a contention by Furtado (2) that botanical literature published prior to 1753 should be regarded as invalid. In our opinion, Chatterjee omits certain relevant considerations, and a further statement on the subject is therefore desirable.

Chatterjee objects to the use of the term valid and its derivatives by Furtado, and also to certain other "unfamiliar" terms, but he does not mention that Furtado has defined the use of these terms (3, 4), nor does he seem aware of the inconsistent use of the terms valid, legitimate and their derivatives in the Rules. Chatterjee himself is not consistent in his use of these terms.

As an example of the confusion that exists, we may quote the following possible argument, using a strict verbal interpretation of the Rules. Under Art. 36, literature published prior to 1753 may be regarded as effectively published, and under Art. 20 legitimate botanical nomenclature begins with Linnaeus' Species Plantarum of 1753; then by the application of Art. 19 and Art. 37, names published before 1753 are illegitimate but validly published (not invalidly, as maintained by Chatterjee); therefore under Art. 61 many Linnean names (which it is the intention of Art. 20 to conserve) become unusable as homonyms.

Basic to all Furtado's work is an attempt to define necessary terms, so that the Rules shall not be ambiguous; he has further attempted to clarify the Rules by bringing together those Rules which deal with the same subject. Much argument about the Rules is due to the lack of clear thought about the use of the terms concerned, and to the lack of logical sequence in the present Rules.

Chatterjee does not mention that Furtado's paper (2) deals with generic names, nor does he mention those parts of Art. 20 and Art. 42 which deal with generic names. Art. 20 states that it is agreed to associate the generic names which appear in Linn. Sp. Pl. ed. 1 (1753) and ed. 2 (1762-63) with the first subsequent descriptions given under those names in Linn. Gen. Pl. ed. 5 (1754) and ed. 6 (1764). Art. 42 states that the generic names of Sp. Pl. ed. 1 and ed. 2 are treated as validly published in those works. If these statements are not intended to indicate that Linnean generic names are not validated by reference to literature

Vol. XII. (1949).
published before 1753, what do they mean? And if such a rule applies to Linnean generic names, surely it should apply also to other generic names.

Prior to the Vienna Congress, the rule about names was “each natural group of plants can bear in science but one valid designation, namely the most ancient, whether adopted or given by Linnaeus or since Linnaeus, provided it be consistent with the essential rules of nomenclature”. For generic names, it was then customary to refer back to Linnaeus’ Genera Plantarum of 1737; some botanists even thought that Tournefort’s work should be made the starting point for them. It was the work of Otto Kuntze which showed the enormous changes that would result if an attempt were made to find the most ancient use of a name, and it was because of this that the Vienna Congress of 1905 passed the rule making Linnaeus’ Species Plantarum, first edition, the starting point for names of genera as well as species.

We contend that it was the intention of the Vienna Congress to make 1753 a starting point, and to rule out of consideration everything before that for purposes of name-validation. The rules which the Congress made concerned generic names, because the concept of a genus, and many generic names, existed before 1753, whereas the bulk of binomial names for species did not exist before 1753. Therefore special rules for generic names were necessary. It was recognised that Linnaeus changed the application of many generic names (so that his own names are later homonyms), and it was intended to regularize the position and prevent further argument.

It is true that the Rules do not specifically say that literature prior to 1753 is invalid. But in fact almost all botanists of the 19th century (except Otto Kuntze and any who followed him) regarded 1753 as a starting point, and did not recognize references to pre-1753 literature as validating names. It was only in the present century that this practice began. Chatterjee states that Prain was the first modern author on East Asiatic botany to validate a binomial by reference to Rumphius; but if he refers to Prain’s publication of the name Sindora galedupa he will find an excellent diagnosis in which S. galedupa is distinguished from all other members of the genus; it is this diagnosis which validates the name, and the case is totally unlike those of Burman’s Index and Stickman’s list, which merely refer to Rumphius without any discussion or diagnoses.

Furtado has shown (2) the appalling complications which can ensue if references to pre-1753 literature are regarded as validating names; this discussion again is not

Gardens Bulletin, S.
mentioned by Chatterjee. We contend that the intention of Arts. 20, 42 and 44 is to prevent such complications. Chatterjee himself admits that the practice is undesirable, and proposes that future authors should be recommended to cease the practice. We should prefer to see the recommendation made into an explicit prohibition by a change in the Rules such as that already proposed by Furtado (4, p. 14).

Furtado contends (and this again Chatterjee does not mention) that reference to pre-1753 literature should have the same status as manuscript notes in herbaria, or as herbarium specimens; a name cannot be validated by reference to notes or specimens. It appears to us that Prain also adopted this attitude to the plate and description of Rumphius which he cited; he used them as evidence only, and did not regard his citation of Rumphius as by itself validating his name.

Now we come to the special case of the interpretation of Linnean names. This is of fundamental importance, and it is not properly discussed in the Rules. It has many difficulties, and there is great need for a clear statement of correct procedure. We believe that proposals for such a statement are now being prepared; they are long overdue. We cannot here fully discuss this complex problem, but we make the following observations.

As Chatterjee points out, the descriptions accompanying most Linnean names are not adequate to characterize the species concerned. They must be interpreted by consideration of the figures quoted by Linnaeus, and also by the specimens which Linnaeus had at that time in his herbarium, or which he saw in other herbaria. These figures and specimens (which Furtado (5) calls the syntypes of a Linnean species; one can speak similarly of the syntypes of a Linnean genus) explain to us what Linnaeus meant, and give his name a meaning. The name is valid (in Furtado's sense) because we agree to start nomenclature with Species Plantarum edition 1 of 1753, and for no other reason; Linnaeus explained his names (and therefore made them usable, or valid in a different sense) by quoting figures and referring (often implicitly) to specimens. The case of Cyclamen indicum, quoted by Chatterjee, in which the figures cited by Linnaeus are incomprehensible (and possibly inaccurate) and no specimens exist, shows how useless the process of "validation" by reference to ancient literature may be.

The principle of priority is not an end in itself. It is a means to an end, and the end is stability of nomenclature. Many early names cannot be typified with absolute certainty. Therefore botanists are apt to disagree about their typification, and stability is lost. We submit that Furtado's

Vol. XII. (1949).
interpretation of the intention of the Rules would eliminate the possibility of a great deal of fruitless argument about the status of ancient names, and thereby free botanists to attend to much-needed monographic work on the vast number of tropical plants which are still unknown or very imperfectly or even inaccurately described.

Old names must be given precise meaning by study of type specimens or by other means; otherwise their use leads to confusion. But if there is insufficient evidence for a precise typification of such names, we submit that it is much better to ignore them altogether. Unless the evidence is clear, there is room for argument, and to difference of interpretation, with resultant instability of nomenclature. It was to eliminate such uncertainty and instability that the present Rules about generic names were made. We believe that these rules should be more strictly defined in the sense proposed by Furtado, and that this would lead to a greater stability of nomenclature.

LITERATURE CITED

Gardens Bulletin, S.
A FURTHER COMMENTARY ON THE RULES OF NOMENCLATURE

By C. X. Furtado,

Botanic Gardens, Singapore

1. Introduction.
2. Certain Elementary Distinctions.
4. The Variety Typica.
5. Sub-divisionary and Disjunctive Groups.
6. Priority of the Names of Generic Sub-divisions.
7. Subspecies are Sub-divisionary Groups.
8. Specific Names and Infra-specific Descriptions.
10. The Status of Formae and Subformae.
15. The Rule of Superfluous Names.
16. Superfluous Names under the Rule of Typification.
17. The Nomenclatural Types.
18. References to Misapplications.
19. Typification of Names in Starting Point Works.
20. Typification of Names on the Author's Manuscript Notes.
21. Typification of Names with a Meaning.
22. Later Homonyms.
23. Specific Epithets under an Improvable Generic Name.
25. The Fallacies of Implicit References.
26. Alternative Names and the Will of the Congress.
28. Orthography of Names.
29. Tautonyms and Generic Homonyms.

Vol. XII. (1949).
1. Introduction

In my previous commentary on the laws of botanical nomenclature (Gard. Bull. Straits Settl. IX, 1937, pp. 223–284), an attempt was made to clarify a number of provisions which appeared vague or inconsistent in the 1935 Rules. Later some amendments were proposed by me for consideration at the 1940 Botanical Congress on points that appeared to me the most essential for future progress (Gard. Bull. Straits Settl. XI, 1939, pp. 1–30). However, I venture here to issue a complementary set of proposals and a commentary in the hope that the philosophical basis of nomenclature may receive due consideration in the revision of the Rules at the 1950 Congress. I submit that the time has come when botanists should pause to analyse first the principles involved in the system of the rules as a whole and then examine the different rules accordingly.

I propose therefore that a special Committee be appointed to consider in detail the principles involved. Should this Committee agree to a principle, but not to the location or the form of an amendment embodying the principle—two reasons why a good proposal may be rejected—the Committee should be empowered to suggest a better place and/or better wording so that the principle might be incorporated in the code.

2. Certain Elementary Distinctions

There is little objection to the use of a word in more than one sense, though fallacies may be lessened by using differential terms; but what is disastrous is that any word should change its sense during a discussion without our being aware of the change. In a code of rules, therefore, the multiplication of distinctions by proper definitions is essential in order to prevent the misapplication of the rules themselves. Thus, much confusion has been caused by the equivocal use of the terms valid, legitimate and their antonyms (Furtado in Chronica Botanica V, 1939, pp. 214–215, and in Gard. Bull. Straits Settl. XI, 1939, p. 24 and Arts. 2B, 16A, 19A and 61B), as well as in the use of the terms binary, biverbal and binomial (Furtado in Philipp. Journ. Sc. LXIX, 1939, pp. 467–469 and in Bull. Jard. Bot. Buitenz. XVI, 1939, pp. 116–119). As a result the entire legislative body has sometimes been misdirected at Botanical Congresses, leaving the taxonomist in uncertainty as to the application of certain rules which previously had been considered clear and straightforward (see also Furtado in Philipp. Journ. Sc. LXX, 1939 pp. 197–199).

Gardens Bulletin, S.
In view of this I submit that the distinctions existing in the most elementary terms binary, biverbal, binomial, valid, priorable, and legitimate with their antonyms might be incorporated in the body of the Rules themselves. This will oblige botanists to consider these distinctions in applying the different provisions in the Rules. I append here a tabulated analysis so that the distinctions may be clearly borne in mind in appreciating the discussions and the proposals that follow.

<table>
<thead>
<tr>
<th>NAMES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VALID</td>
<td>Have a status under the Rules, and so must be recognized by botanists. They stand for a description, date of publication and a type, which botanists are bound to find out.</td>
</tr>
<tr>
<td>INVALID</td>
<td>Have no status under the Rules, and so no claim to recognition by botanists. No one is bound to search where they are published, or to find what they mean.</td>
</tr>
<tr>
<td>PRIORABLE</td>
<td>Must be included in priority considerations.</td>
</tr>
<tr>
<td>IMPRIORABLE</td>
<td>Must not be included in priority considerations (e.g. later homonyms, nomina confusa, rejicienda, etc.).</td>
</tr>
<tr>
<td>LEGITIMATE</td>
<td>The correct name to a group under a given circumscription, position and rank. Under such circumstances there can exist only one legitimate name to a taxonomic group (Art. 16A).</td>
</tr>
<tr>
<td>ILLEGITIMATE</td>
<td>Incorrect names under a given circumscription, position and rank. They may be correct under different circumstances.</td>
</tr>
</tbody>
</table>

Vol. XII. (1949).
3. Condensation in the Rules

In the 1935 Rules, provisions concerning a particular subject are unnecessarily scattered in different Sections and in different Chapters so that this diffusion has frequently confused even experienced nomenclaturists. To give an instance of the confusing way one has to wade through the Rules in order to find whether or not a name is correct, I quote the following from two acknowledged nomenclatural authorities:

"Abies taxifolia" Poir. was actually a new combination for Pinus taxifolia Lamb. (1803) non Salisb. (1796), and as such invalid, but as a new name it is valid under Art. 69, since Poiret was at liberty to adopt the epithet taxifolia although it had previously been given to the species in an illegitimate combination." (Sprague and Green, The Botanical Name of the Douglas Fir, in Kew Bull., 1938 pp. 79-80).

Gardens Bulletin, S.
That is, a name which was "actually a new combination" and "invalid" under one rule becomes "a new name" and "valid" under another. Yet we are told that "names and forms of nomenclature contrary to a rule (illegitimate names or forms) cannot be maintained." (Art. 2). Under this definition in Art. 2, therefore, Abies taxifolia Poir. should be considered illegitimate and unusable if the arguments brought forward by SPRAGUE and GREEN were accepted as correct. (Note also that the use of the word "valid" by SPRAGUE and GREEN is not in accordance with its definition in Art. 16). If this case were considered under the strict wording of Art. 54, another interpretation is possible, though overlooked by SPRAGUE and GREEN. Under this Article, it looks as if POIRET was obliged to adopt the epithet taxifolia when he transferred Pinus taxifolia Lamb. to Abies; for there was not available for the species an earlier validly published epithet, nor was the resulting combination a later homonym or a tautonym—the only two obstacles under which Art. 54 allows a different epithet to be used for a species when transferred from one genus to another (see also Furtado in Gard. Bull. Straits Settl. XI, 1939 p. 24 sub Art. 53A and in Fedde, Repertorium XLIV, 1938 p. 244–255).

In view of this misleading diffusion in the Rules, I plead again for a rearrangement so as to keep all the provisions pertaining to one particular subject together.

4. The Variety Typica

A botanist who wishes to make one and the same specimen the basis of a species, variety, and subvariety at the same time, yet wants to keep the infra-specific epithets under the same binomial, will naturally (in this particular case) make our system polynary, polynomial and polyverbal, though only in form; for all such infra-specific epithets added to the biverbal specific name (a binary) would convey nothing more than the binomial as typified strictly by the type specimen (species sensu stricto). Further, a varietal name (which is ternary), when applied to the type of a species (a binary group), involves a contradiction in terms. I submit this systemic incompatibility as the principal reason why a formal trinomial given to the type of a species (species sensu stricto) cannot have a status under the Rules and so cannot be used in priority considerations. BOLLE (Notizbl. Bot. Gart. Berlin-Dahlem XIII, 1937 pp. 524–530 with an appendix by Harms, Mattfeld and Pilger) has

Vol. XII. (1949).
shown that serious complications arise by considering valid the infra-specific epithets conventionally adopted to indicate the species sensu stricto, their invalidity being also explained independently by me in Gard. Bull. Straits Settl. IX, 1937, pp. 242–244 (cf. also XI, 1939, pp. 19–20).

Nevertheless FOSBERG (Amer. Journ. Bot. XXVI, 1939, pp. 229–231) and CROIZAT (Journ. Arnold Arb. XXII, 1941, pp. 133–142) have scanned the misleading rule of “superfluous” names (cf. Discussion 15 below) and have come to the conclusion that “there is nothing in the rules which says that ordinary sub-divisional epithets shall not designate the typical sub-division.” (Fosberg). In fact CROIZAT has created nomenclatural complications by applying the rule of priority to the varietal epithets given to the species var. *typica*. A name that contravenes a very fundamental principle in the nomenclatural system should be regarded as invalid (having no status under the Rules). There is no sense in scanning the provisions of legitimacy or priorability to find whether there is in them anything to prevent the use of such a name, as they are applied only to those names that are valid (have a status under the Rules).

Difficulties in understanding this principle arise when a botanist considers a species as a wide group to be subdivided into smaller groups (varieties). Horticulturists, by ignoring the type-concept, follow this system and make varieties their lowest autonomous units, the aim in horticulture being to name and describe the lowest variation. But, unlike horticulturists, the taxonomist not only accepts the type-concept but also makes the species the lowest autonomous unit, admitting varieties and subvarieties as subordinate groups only. The type-concept implies that the species sensu stricto (var. *typica*) be taken as the “standard” with which to compare the divergent elements. If the differences do not deserve a separate specific rank, then the elements are classified with the “standard”, the differences being considered as minor. Should some of the minor differences be considered as meriting special attention, then the principal differing elements are named and characterized as deviations (varieties) from the type (species sensu stricto), while those differing from the type of the variety are named as subvarieties. The type form of the species itself does not receive any infra-binary name except a conventional epithet when one wishes to emphasise that the binary group should be interpreted strictly according to the type. In this connection it might not be out of place

Gardens Bulletin, S.
to quote here the very apt remarks made on the subject by Prof. L. H. Bailey:

As employed by the writer, following Article 30, Recommendation 18, of the International Rules of Botanical Nomenclature, the epithet var. *typica* is not regarded as a new name, but as a parenthetical practical device to permit accurate designation of the typical element of a species. It has no nomenclatural standing and does not require the citation of an authority. Whenever a variety or a subspecies is described or placed in a species, the typical element of that species automatically becomes variety or subspecies *typica*. (Gent. Herb. IV, 1940, p. 292).

Here BAILEY is not considering the distinctions shown to exist between sub-divisionary and disjunctive groups (Discussions 5–8 below), a distinction which makes a variety always a ternary group even when there be a subspecific epithet preceding the varietal epithet; but the principle of var. *typica* is clearly indicated. It is also important to note here that the Rules as drafted at present admit varying interpretations so as to lead BAILEY to maintain a view quite opposed to that of FOSBERG and CROIZAT.

5. Sub-divisionary and Disjunctive Groups

False analogies seem to have played a good deal of influence in the modifications that have extended the application of special rules covering the names and descriptions of subspecies and of sub-divisions of genera, to the names and descriptions of other subordinate groups also. Thus, if epithets denoting a subspecies could be omitted in a “quadrinomial” so as to make the varietal name always a ternary trinominal, the analogy has been erroneously extended to the epithets denoting inferior groups so as to make it “permissible to reduce more complicated names to ternary combinations.” (Art. 28). Because the description of a subspecies (or a section) can be referred to in validating a specific (or a generic) name, the descriptions of varieties, subvarieties, formae and subformae have been invested with the power to validate any group from a species downwards (Arts. 49 and 58). Since epithets denoting a subspecies have a priority right outside their own species, the same sort of right has been extended to epithets denoting generic sub-divisions outside their own genera (Arts. 53 and 56) and similarly to epithets denoting varieties and other inferior groups outside their own species (Arts. 55 and 56). Before assessing the need for making different sets of rules to cover these different groups, it would be advisable to pause a while to examine how

groups like a subgenus or section differ philosophically from groups like varieties and subvarieties, leaving the sub-species for a special discussion by itself.

Groups like subgenera, sections and sub-sections divide a superior group into two or more sub-divisions. There can never be only one sub-divisionary group under its immediately superior group; the existence of one such sub-division, therefore, implies the existence of at least another of the same rank and in the same position. Hence should there be only two sub-divisions under a group, the suppression or transference of one means also the death of the other. Only these kinds of groups are called here as sub-divisionary.

In this sense varieties and subvarieties are not sub-divisionary groups; they are subordinate groups of the disjunctive class, being minor deviations from the "standard" set by the type specimen (Discussion 4). It is possible to have only one such disjunctive deviation under a species or a variety. Sub-divisionary groups are established to classify previously well recognized entities of a different category, and so each sub-divisionary group must at least include one such entity in it; whereas a disjunctive group is created to show a newly recognized deviation from the standard and so is not a heading for grouping any other subordinate entities (see Discussion 12 below, where the species and genera are shown to belong to neither of these two categories).

In view of these differences there are no compelling reasons for subjecting the names of both these kinds of groups (sub-divisionary and disjunctive) to a uniform set of priority and other rules; on the contrary it is proposed to show below reasons for subjecting each kind to a different set of rules.

6. Priority of the Names of Generic Sub-divisions

Taxonomically, the sub-divisionary entities under a genus appear to be unstable and represent different attempts to classify the species with the view either to indicate their affinities or geographical distribution, or to facilitate their identification. Hence these infra-generic sub-divisionary groups vary in importance according to the basis and aims for which the sub-divisions are made. The orthodox practice is to allow priority to the names of infra-generic sub-divisionary groups only when the basis of the classification is the same; not otherwise, and never outside their own genus. Of course in the examples mentioned in Art. 53, the sectional name is retained outside its original genus; but

Gardens Bulletin, S.
there are also numerous instances where such names are rejected because their retention, on the transfer or remodelling of the divisions, would cause serious complications both in nomenclature and in taxonomy. Thus GRIFFITH (1844 and 1850) divided *Calamus* into three sections:

Section 1: PIPTOSPATHTAE Griff.: Only the lowermost spathe is persistent; others deciduous.

Section 2: PLATYSPATHAE Griff.: All the spathes persistent, tubular only (if at all) at base, expanded into a broad, loose lobe at the end.

Section 3: COLEOSPATHTAE Griff.: All the spathes persistent, strictly tubular throughout, obliquely truncate at the end.

Subsequent botanists retained these sections only when the basis of their classification remained the same as GRIFFITH's. Thus, RIDLEY (Mat. Fl. Malayan Pen. II, 1907 p. 189-190) in dividing *Calamus* into sections on a different basis, was right in not retaining any of GRIFFITH's sectional names. RIDLEY divided his sections as follows:

Section 1: MISCHANTHECTAE Ridl.: Spadices flagellate, leaves not flagellate.

Section 2: PHYLLANTHECTAE Ridl.: Leaves flagellate, spadices not flagellate.

It is obvious that this aspect of the question has been overlooked in the Rules, and on false analogy the provisions applicable to the names of genera and species have been applied to the names of the sub-divisionary class also. No doubt we must avoid useless creation of names, whatever that phrase may mean (Art. 4); but any attempts to effect definiteness in the nomenclature of sub-divisionary groups where no such definiteness is obtainable in taxonomy, are likely to raise more difficulties than solve them. It is better to have more names and clear taxonomy than fewer names and confused taxonomy.

In the appended proposals therefore the rule in Art. 53 has been transformed into a recommendation to be applied whenever possible, and at the discretion of the botanist effecting the transfer of, or sub-dividing, the group.

7. Subspecies are Sub-divisionary Groups

As to the status of the subspecies, there are two widely divergent views current at present: the one regards the subspecies as a taxonomic group larger than, though of the same class as, a variety; the other considers the subspecies
as a sub-divisionary group, that is, a taxonomic device of the same nature, not of the same rank or position, as a section of a genus. In the latter sense a subspecies helps to classify the varieties occurring in very large, widely polymorphic groups called metrospecies, super-species, species complex, or species sensu amplissimo. In a stricter sense the subspecies could have been raised to a specific rank, but the intergrading variations do not allow a clear cut distinction; such groups are generally found in plants which have been cultivated extensively for a long time under different ecological or other conditions. This latter concept, which makes the subspecies a sub-divisionary group, is the older of the two and is one that seems to be widely current; it is also one that accords fully with many current nomenclatural procedures and, therefore, deserves to be adopted in the Rules.

Further, all the subspecific groups were at one time considered as good microspecies sensu stricto, and so subspecific names were admitted also as alternative specific names, the latter being formed by dropping out the specific epithet from the subspecific trinomial. It is because of this view that all subspecific names are registered as specific names in the early parts of Index Kewensis, and the practice has been long current to accept as valid all subspecific names even when published as binomials under a species. But in the Rules the status of subspecies has been confused with the disjunctive groups, as if a subspecies were merely a large variety. As a result of this confusion there has arisen a tendency to disregard subspecific names as good alternative specific names. Those alternative specific names that are current for subspecies have been taken as validly published in the nomenclators where they were first registered as binomials; it is overlooked that the compilers of nomenclators like Index Kewensis did not intend to create new specific names for subspecies, but recorded what sound practice then current obliged them to record. It is necessary to remove this confusion from the Rules. It seems desirable to legislate invalidating automatic alternative specific names to subspecies published after 1930.

8. Specific Names and Infra-Specific Descriptions

Since subspecies are microspecies based on characters co-ordinative with the species, it follows that reference to a subspecific description is sufficient to validate a species—a conclusion also defensible on the basis of a subspecies being a sub-division of a species (cf. generic names validated by Gardens Bulletin, S.
referring to the descriptions of subgenera, sections and subsections which might be called microgenera). But on false analogy specific names have been allowed to be validated by referring to the descriptions based on subordinate characters of the disjunctive groups (Arts. 49 and 58). This practice (now legalised) forms at present the only reason for discouraging taxonomy of cultivated plants (see also Discussions 4 and 13). Under Arts. 49 and 58, infra-specific names, when abbreviated by non-taxonomists into bivertals, might have to be accepted as good specific names, though published in most unexpected places like nurserymen's seed-lists, lumbermen's journals, agricultural field experiment records, and catalogues of plant-products. Not only would such names burden systematists with useless, confusing synonymy, but would often necessitate name-changes because of their priority or homonymy. Another result of the provisions in Arts. 49 and 58 is to admit the use of binary names to infra-specific groups prohibited under Art. 28, for these horticultural binomials would be nothing more than binary names created by incompetent persons for the taxonomist's varieties, subvarieties, formae and subformae. (For further complications that this procedure would cause if the theory of implicit references were admitted as valid, see Discussion 25).

In view of this it seems necessary to change the terminology in Arts. 28, 30, 44, 49, 52, 55, 56 and 58, and to alter Arts. 49 and 58 so as to prohibit validation of specific names by reference to the descriptions of disjunctive and other subordinate groups.

9. Priority of Ternary and Sub-Ternary Names

On the mistaken belief that subspecies are merely subordinate groups analogous to varieties and subvarieties, the rule of priority has been uniformly applied to the epithets of all these groups. The epithets of varieties and subvarieties, like those of subspecies, have been thus invested with priority claims even outside their species and genus (cf. Arts. 55 and 56). One has only to try to straighten the nomenclature of the varieties of, say the Date, Wheat, Rye, Soya, Rose, Mustards, and Oranges, to realise the utter hopelessness of working out the nomenclature on these provisions. Added to this there is the difficulty of typifying the names of varieties, subvarieties and other subordinate groups, because these are based often on characters not identifiable in herbarium specimens, and also because often plant-geographical procedures are not applicable in typifying such names. The only practical solution

Vol. XII. (1949).
in such cases lies in limiting the priority of these names under their immediately superior groups and not to permit reduction of infra-ternary combinations except by removing the intercalating omissible epithets (subspecific epithets and var. typica). An amendment has therefore been proposed so that varietal epithets instated under one species may not have a priority claim outside that species.

10. The Status of Formae and Subformae

Formae and subformae fall outside the scope of alpha and omega taxonomy, though in economic botany these groups may be given a status similar to varieties. Their study leads one into the realms of physiology, horticulture, and genetics. It is evident that these groups have been admitted as special subjects of nomenclatural rules. Their nomenclature therefore should not be allowed to interfere with that of disjunctive taxonomic groups subordinate to a species. Reference to their descriptions should not be allowed to validate the names of any higher groups like varieties and species, nor of any groups outside their immediate superior group.

Further, formae and subformae may be distinguished even in the species, variety and subvariety (all sensu typico). Reducing them to ternary expressions when instated as infra-ternary groups will therefore confuse their identity; hence such reductions should not be permitted even when the intercalary epithet is that of a subspecies, unless the epithet is var. typica or its equivalent.

11. Reducibility of Infra-Ternary Names

It has already been shown that subspecies are subdivisions of a species complex and that the subspecific epithet may be omitted. Also the varietal epithets instated under subspecies may be joined directly to the binomial denoting the species sensu amplissimo. It has been shown further that this procedure cannot be extended to the epithets of non-subdivisionary groups (the epithet typica or its equivalent is a conventional device having no priority claim). Because of this permission to omit sub-divisionary epithets, Erysimum hieraciifolium subsp. strictum var. longisiliquum and E. hieraciifolium subsp. pannonicum var. longisiliquum (example given under Art. 30) form a pair of homonyms (E. hieraciifolium var. longisiliquum), one of which has to be rejected under Art. 61. Further as var. typica should have no status under the Rules, the name Saxifraga Aizoon var. typica forma rubra can be abbreviated into S. Aizoon forma rubra. But because such

Gardens Bulletin, S.
"quadrinomials" can be abbreviated to trinomials, analogy cannot be extended to permit reduction of infra-varietal names to ternary combinations without causing serious confusions in nomenclature. The rule which permits the reduction of infra-ternary combinations should therefore be modified.

12. Philosophical Differences in Taxonomic Groups

In the foregoing Discussions, I have attempted to show that, in addition to differences in categories or ranks of taxonomic groups enumerated in Arts. 10–12 (which may be said to be phylogenetical), there is also a philosophical difference in these groups according to their nature, and their relationship to their immediately superior or inferior group. In order to bring out these differences, the taxonomic groups are here divided into Necessary and Accessory groups.

The Necessary groups are essential to the present system of nomenclature and taxonomy, and the existence of one implies the existence of all the others, both superior and inferior to the one mentioned; there need not be more than one Necessary group under a superior group. The Necessary groups are Species, Genus, Family, Order, Class and Division. Among these, the Species and the Genus are the only two which are absolutely essential to the binomial system of nomenclature, and so to the immediate aim of taxonomy (alpha taxonomy, as some botanists would call it), that is, to the naming of the distinguishable species in the vegetable kingdom; hence these are called the Fundamental Necessary groups. The remaining Necessary groups are not essential to alpha taxonomy and were introduced into the system much later than the Fundamental Necessary groups; but these Non-Fundamental Necessary groups are needed in order to achieve the more remote aim of taxonomy (omega taxonomy), namely, to understand the phylogeny of different species of plants, or their taxonomic affinities.

The Accessory groups, on the other hand, are useful to indicate the affinities of the inferior groups under a superior one; they are divided into two categories, the Sub-divisionary and the Disjunctive. The Sub-divisionary groups divide a group into two or more inferior ones, and so can never exist singly under an immediate superior group; subspecies and sub-divisions of a Genus, Family, Order, Class and Division fall into this category. The Disjunctive groups represent subordinate deviations (not co-ordinate) from an accepted unit or standard: they are varieties and subvarieties. Formae and Subformae, being of varying nature, and at present not well defined, are included as

Vol. XII. (1949).
special subjects of nomenclature. Their taxonomy lies outside the scope of alpha taxonomy, being a corridor into the realms of physiology, horticulture and genetics.

TAXONOMIC GROUPS

- **NECESSARY**
 - essential to the present system.

- **FUNDAMENTAL**
 - absolutely essential to the alpha-taxonomy: *Species* and *Genus*.

- **NON-FUNDAMENTAL**
 - not essential to alpha-taxonomy, but essential to omega-taxonomy: *Family, Order, Class and Division*.

- **ACCESSORY**
 - not essential to the system at all, but useful.

- **SUB-DIVISIONARY**
 - these sub-divide a group into two or more divisions, never one; *subspecies, sub-sections, sections, subgenera* and *sub-divisions of a family, order, class and division*.

- **DISJUNCTIVE**
 - these do not sub-divide a group, but indicate subordinate deviations from the superior group in a restricted sense. There can be one or more disjunctive groups under a superior group: *variety* and *subvariety*. *Forma* and *subforma* are exceptional subjects.

13. The Nomenclature of Hybrids and Cultivated Plants

From Arts. 10, 12, 28 and 35, it appears that the taxonomist generally regards the study of hybrids and of cultivated plants with suspicion; in fact it would seem from the wording of the Rules that these plants are precluded from being named botanically. However, an examination of the names of cereals, fruits, vegetables, ornamental and oil plants reveals the fact that plants derived from hybridisation, or known only in cultivation, were formerly considered as worthy subjects of botanical nomenclature;
their names, even if given after the 1930-35 Rules, are retained as valid. The wording of the above cited Articles seems therefore to have no value except to show that, in general, the taxonomy of non-feral plants is to be discouraged.

The first reason for this attitude is that such plants are usually studied, described, and even named in their own way, by agronomists, horticulturists, or nurserymen, who are often unfamiliar with botanical nomenclatural procedure. In many such cases, biverbal or binomial names in Latin are used. When descriptions in any romanised European language were admitted for instating a valid botanical name, there was a real danger of the botanical nomenclature of cultivated plants being burdened with a host of binomials based on biological, physiological, anatomical, horticultural and genetic distinctions. But now this danger has been removed by prescribing Latin for describing taxonomic groups of recent plants (except bacteria) after 1934.

The second reason for discouraging the taxonomy of cultivated plants is because of the procedure, now becoming popular, of instating specific binomials by referring to descriptions of varieties and infra-varietal groups. Under such a procedure all the abbreviations made of varietal and infra-varietal names by non-systematical workers would have to be accepted as valid specific names. If such a validation of specific names were prevented, there would be no justification for refusing to admit the plants of cultural and hybrid origin as normal subjects of nomenclature. (See Discussions 8 and 10).

14. The Status of the Rules Regarding Hybrids

To many taxonomists Arts. 31-34 are a frequent source of confusion. If, for instance, at the time of giving a name to a species or a genus, its supposed hybrid origin is indicated and the putative parents mentioned, some taxonomists maintain that such a name would be a good nomenclatural entity, but not subject to the ordinary rules of nomenclature. Under this view the name would have to be associated not with the taxonomic group described, but with the putative parents. Should a subsequent botanist disagree with the alleged parentage and indicate different parents, then the nomenclaturists would change the name. This view would also permit validation of names in anticipation of actual production of hybrids (cf. Colmanara and Hatcherara in Orch. Rev. 1948, p. 145). The supporters of this view overlook the fact that the name is to be associated with the taxonomic

Vol. XII. (1949).
group represented by the type specimen and with its description, and not with the alleged or real ancestors (Arts. 15 and 18). Further a formula denoting a hybrid will include all the different phenotypes and genotypes produced in the successive filial generations and may consequently include also genotypes resembling one or both the parents. Therefore such formulas, although helpful to the geneticist as recording the history of his hybrids, will not help the taxonomist to identify the plants themselves. The formula is therefore not a substitute for a diagnosis. Moreover correct formulae are sometimes unusable for systematic purposes in the case where one of the putative parents has to be given the status of a variety, as is often the case when its putative hybrid offspring have already been given the rank of a species. Thus if C is a genotype derived from a cross between A and B, and differs only varietally from B, and if A and C have been named specifically earlier than B, then B can only be named nomenclaturally as a variety of C, even though the latter is genetically derivative from B. The formula A x B = C cannot be accepted by systematists, when nomenclaturally B is a variety of C.

It is evident therefore that the object of Arts. 31–35 is to put some sort of order in non-botanical nomenclature of cultivated plants and hybrids, so that it may serve the purpose of communicating to the public the results obtained in applied botany in general. It was never intended to give non-technical names a status in botanical nomenclature. The plea that the earlier use of the formula Juncus alpinus x articulatus is an obstacle to the use of Juncus alpino-articulatus is therefore based on a misconception (cf. Dr. A. Becherer’s proposal for the 1935 Congress).

In view of this susceptibility of the rules to be misinterpreted because of their misplacements, Arts. 31–35 have been proposed to be transferred to their proper places in Appendix VII of the Rules. A recommendation might be inserted in the code advising botanists to follow horticultural rules for cultivated plants that cannot be placed in any definite taxonomic categories. If these Articles are transferred to Appendix VII, then Art. 14 is not required; besides it is questionable whether the definitions of half-breeds (mistus) and hybrids (hybridus) will be uniformly accepted by taxonomists, horticulturists and geneticists; for the application of these terms is made dependent on taxonomic opinion regarding the status of the putative parents of the hybrids, e.g. Vinca rosea x V. alba (hybridus) = V. rosea x V. rosea var. alba (mistus). (cf. also Furtado in Gard. Bull. Straits Settl. XI (1939) 10–13 and in Fedde, Repertorium XLIV (1938) 244–255).

Gardens Bulletin, S.
15. The Rule of Superfluous Names

Sound jurisprudence demands clear distinctions in the rules of validity, priorability and legitimacy. The rule of validity should tell when a name should be admitted as a valid nomenclatural entity, all names having no claim to recognition by botanists being invalid (Art. 19A). The rule of priorability should direct when a given valid name should be included in priority considerations; while the rule of legitimacy should decide whether a certain priorable name is legitimate or illegitimate in the given circumstances. But instead of distinctions, all the offences against these three categories of the rules have been lumped together in Art 60 as if they all mattered directly to the priority rule, thus overlooking the important fact that only the names that are valid and priorable can be included in priority considerations. A further complication arises because in certain cases the procedure has been inverted in Art. 60, so that the rule of priorability is made dependent on the correct application of the rule of priority. Thus the name becomes impriorable merely because it has been instated against the priority rule.

Furthermore in a code where the rules are made to be followed, there is no need to enumerate separately all the offences that may be committed under the provisions already in the code. Such an additional enumeration increases unnecessarily the bulk of the code, and may bring about ambiguity in some of these offences, especially when, as in Art. 60, they are all lumped indiscriminately together. However, it is of great importance to classify the offences according to their four categories referring to validity, priorability, legitimacy and propriety of names (the last mentioned category being concerned with the correct gender, spelling, manner of citation, and authorship). It is desirable to delete Art. 60 altogether, and to provide for the classification of these four categories of offences (cf. Furtado in Gard. Bull. Straits Settl. XI, 1939, pp. 1–4 and Arts. 2B, 19A & B, 53A and 59–69).

However, in most cases, names published in violation of the priority rule cannot be employed as legitimate, not because of the existence of Art. 60, but because the priority rule (Art. 56) prescribes the use of the oldest priorable name or epithet that can be adopted in the required position. Thus, in the example discussed under Art. 60 (1) Cainito Adans. (1763) has to be disregarded because Chrysophyllum L. (1753) is the oldest usable name in the given circumstances. There are also cases where a new name is not synonymous with the names cited under it. The citation means either that the cited synonym is taken in a particular

Vol. XII. (1949).
misinterpreted sense, or that the new name is taken in a very wide sense. In the latter case, the included synonym is considered taxonomically or ecologically a minor or less primitive group to be separated co-ordinately, whenever the sense of both is severely restricted. Rejection of such new names would cause more problems than it would solve, and may necessitate a lengthy nomina specifica conservanda. The best solution in all these cases is to ignore Art. 60 altogether and to treat the names under the rule of typification (see next Discussion). This principle would find a strong justification in the procedure followed prior to the 1935 Rules by almost all supporters of the type and priority concepts. Its abandonment now appears to have been voted without foreseeing the evil consequences that would result therefrom. In the accompanying amendments therefore directions for definite typification of such names have been given, Art. 60 has been eliminated and provision for the classification of offences according to their different categories has been included.

In order to follow the principle elaborated above, it would be useful to examine here some examples:

Example 1: E. GEDNER (Ficus, 1786, pp. 5, 11 & 15), in a dissertation prepared under the direction of THUNBERG, quoted "Ficus pumila Linn. Syst. Veg. p. 922" in the synonymy of a new species, F. erecta Gedner. On the face of this circumscription, F. erecta appears to be a "superfluous" name (Art. 60–1). But from the original specific description as well as from the fact that GEDNER has retained F. pumila (bearing the same reference) as a good species, it is obvious that some such word as partim was understood after the synonym. This case is clear because GEDNER has treated both F. pumila and F. erecta in the same pamphlet; had he restricted himself to describing only the new species, Art. 60–1 would have been applied without any further inquiry. Rather than reject F. erecta as a "superfluous" name and thereby create complications, the species should be typified on the holotype or lectotype of the new description.

Example 2: Cerastostylis eriaerioides Hook. f., Lc. Pl. (1891) 2074 was a "superfluous" name because it was based on Eria pygmaea Hk. f., Fl. Brit. Ind. V (1890) 804, a priorable name having an epithet that could have been adopted in the new position. But since C. pygmaea (Hook. f.) comb. nov. cannot now be used because of C. pygmaea Evard. ex Gagn. in Bull. Soc. Bot. France Gardens Bulletin, S.
LXXIX (1932) 33, C. eriaerioides Hk. f. must be employed as the correct (legitimate) name. To reject this last name as “illegitimate” with Hook. f. as its author and then to adopt it again under a different authorship and different date as a non-homonymous name is not a satisfactory procedure (see Discussion on Later Homonyms 22).

Example 3: Wendtia DC. (1830) was published as a better spelling for Wendia Hoffm. (1814). Wendtia DC. must not be rejected as having no claim to recognition, on the plea that it was “superfluous” nor Wendtia Meyen (1834) be allowed as a non-homonymous legitimate name (cf. Furtado in Gard. Bull. Straits Settl. IX, 1937, p. 252). These names must be typified on their respective types. Wendtia Meyen (1834) cannot be accepted because it is a later homonym of Wendtia DC. (1830) (see Discussions 28 and 29).

17. The Nomenclatural Types

The first part of the Note under Art. 18 states that “the nomenclatural type is not necessarily the most typical or representative element of a group”. Since the word typical has no relation whatsoever to the word type occurring in the same sentence, and since the word representative is nowhere defined in the Rules, the above quoted sentence appears to express a contradiction in terms; and CROIZAT, even after distinguishing between what he called physical and nomenclatural types, found the statement in the note incomprehensible (Journ. Arnold Arb. XXII, 1941, pp. 133–142). In order to make the meaning clear therefore the following revision of the Note is suggested:

The nomenclatural type does not necessarily represent the element of a group that is genetically the most simple, phylogenetically the most ancient, ecologically the most common, taxonomically the most polymorphous, or biologically the most perfect.

Further, for the purposes of nomenclatural rules, the lowest category to which taxonomists can go is not the individual plant as implied in Arts. 10 and 12, but the type specimen as implied in Art. 18. Specimens from the same individual may show different phases of growth. Names given to monstrous specimens may not be priorable (Art. 65); and in certain fungi only specimens from the perfect stage of the individual must be considered as valid types, so that earlier names based on invalid types cannot replace those based on valid ones (Art. 57). It must be further admitted that genera as a rule are based on specimens and in some cases these specimens are not the nomenclatural types of any of the included species. This is particularly

Vol. XII. (1949).
true of the new monotypic genus where the "type species" has to be designated with the epithet of an older species. The statement therefore that the type of a genus is always a species has misled botanists to give contradictory decisions. This statement applies well to the genera in Linn., Sp. Pl. eds. 1 and 2, where each genus has been instated merely by mentioning the species included under it, a procedure contrary to Art. 41, but allowed as a special case under Art. 42 (second paragraph). But in all other cases, the genus has to be associated with its holotype or lectotype specimen. Only when the specimen type of the genus and that of its species are identical, may the type of the genus be indicated by merely mentioning the species. In the accompanying amendment (Art. 51A Note 3) provisions are therefore made for observing this principle.

If these principles were adopted, the amendments proposed by CROIZAT regarding the type in Arts. 18, 30, 51, 52, 61 and Rec. XVIII and XXXV are not needed; and without the acceptance of these principles, the amendments suggested by CROIZAT are not workable in many cases. However, in Rec. VII the word "type" should be replaced by the word "syntype" (see Furtado, Nomenclature of Types in Gard. Bull. Straits Settl. IX, 1937, pp. 285–309). It is also necessary to delete from the third line in the example of Art. 18 the words "and description" and to substitute "subdividing" for "revising" in Rec. V (see also Discussion 19–21). Further since "var. typica" does not indicate a separate ternary group other than the species itself, it would be misleading to say that a species has been established on one of its varieties. As shown in Discussion 4 the simultaneous publication of priorable names for a variety and its species both based on one and the same specimen is a systemic incompatibility under the binary binomial system of names (see also Discussion 18).

18. References to Misapplications

It is stated in Art. 18 that "the name of a group must be changed if the type of that name is excluded (see Art. 66)". Now Art. 66 is to be applied in particular circumstances; its application cannot therefore be generalized in Art. 18 so as to make it applicable in all circumstances. Art. 66 has nothing to do with the nomenclatural type which has been defined as "that element of a group to which the name of the group is permanently attached". (Art. 18); Art. 66 forbids the use of a name for a higher group if that name has been derived from the name of a genus which is not retained in the group.

Gardens Bulletin, S.
An erroneous use of the word "type" to mean "the root-name" in the sentence of Art. 18 where the "type" otherwise means "nomenclatural type" has misled many to the conclusion that a new name connoting a new taxonomic group can be validated by referring to a residual description after its type has been excluded from it. But this conclusion overlooks the fact that a taxonomic group ceases to exist when its type is excluded from it (cf. Furtado in Gard. Bull. Straits Settl. IX, 1937, pp. 258-267). The 1935 Congress, by deciding that Tsuga Mertensiana Carr. and T. Mertensiana Sarg. non Carr., were not two homonyms, but one and the same name, T. Mertensiana (Bong.) Carr. emend. Sarg., with Pinus Mertensiana Bong. as the basinym (Art. 54), showed that a misinterpretation does not create a new taxonomic group, nor a new type.

A misinterpretation based on new specimens implicitly includes also the type of the misapplied name. Besides, such a description does not indicate how much of it is based on the old type, and how much on new misidentified specimens. Often the new description is the old description slightly altered in order to cover new data based on re-examination of the old specimens and additional data of what is regarded as a subordinate variation of the same group though noticed only in the new specimens. This new description cannot be dissociated from the old type included implicitly in the new description. Thus Gonolobus rostratus (Vahl) R. Br. (1809) sensu Schlechter (1899) is not able to validate G. jamaicensis Rendle nom. nov. in Journ. Bot. LXXIV (1936) 245; for RENDLE, by excluding the type from the description of SCHLECHTER, intended to create a new taxonomic entity. RENDLE should have therefore given a new description and in Latin. If, on the other hand, G. rostratus as described by SCHLECHTER were admitted to mean that it is SCHLECHTER's description minus the type of G. rostratus (Vahl) R. Br., then contrary to the provisions in Arts. 47 and 54, every misinterpretation of a name would create a new homonym, and so G. rostratus R. Br. sensu Schlechter would be equivalent to G. rostratus Schlechter, though SCHLECHTER himself had admitted VAHL's type as the type of the group he re-described.

The only safe guide for the botanist who wishes to make a new taxonomic group out of a misapplication is to re-describe it at the time of publishing its new name. In view of this I propose the deletion of the misleading clause from Art. 18, and have added a special note in Art. 37 so as to deny explicitly any valid status to misapplied descriptions and names.

Vol. XII. (1949).
19. Typification of Names in Starting-Point Works

In a previous paper I attempted to show that the names published even without any description but in books adopted as nomenclatural starting points cannot be rejected as invalid (cf. Blumea, Suppl. I, 1937, pp. 123–132). In a subsequent paper I pointed out that often LINNAEUS, in adopting pre-1753 names, did not retain the original sense, and that it is to oblige botanists to typify the names on their 1753-types, and not on their previous ones, that the 1905 legislation fixed 1753 as the earliest starting-point for the species and genera, and invalidated earlier references under the same name (Furtado in Gard. Bull. Straits Settl. X, 1938, pp. 162–172 and Art. 42 (2) and Art. 44 (2) of 1935 Rules). According to these principles, therefore, the name adopted in any starting-point book should be typified on the description given (if any) and the types cited or implied in the book itself, even when the name and its description in this book is taken bodily from an earlier book having different types (cf. also Art. 54 in 1867 Code and De Candolle’s Commentary on it).

This procedure is fundamentally opposed to that adopted by KUNTZE (Revisio Genera P1. 1891–98 and with POST, Lexicon 1904), who typified the names on their history prior to their validation under the Rules. KUNTZE’s plea was that nobody should have any right to change the application of a name after its publication, even if this publication were before the starting-point, and, therefore, invalid. But decisions made by the 1905 Congress obviously condemn KUNTZE’s procedures of typification, and permit the names to be typified on any syntype used in the starting-point books (Furtado in Gard. Bull. Straits Settl. X, 1938, pp. 173–181). Much of the confusion that exists among mycologists on the interpretation of the Friesian species and genera could be eliminated by following this general principle. The botanist who detects any mixtum compositum should have the right to choose any of the specimens as the lectotype on botanical grounds (Furtado in Gard. Bull. Straits Settl. IX, 1937, pp. 244–249 and XI, 1939, p. 18 Art. 22B).

20. Typification of Names on the Author’s Manuscript Notes.

No typification of names should be made solely on clues left by the authors on herbarium sheets. Such notes or signs are often of a provisional nature, and if they were of paramount importance in typification, they should have been published. A botanist may often name a specimen in a herbarium because it looks aberrant; he may even indicate it as the type of the name and make numerous notes on the sheet. Yet he will often delay the publication of the group

Gardens Bulletin, S.
until he has had better specimens for study. In such cases the information found on the herbarium sheet first seen by the author may be misleading. Besides, not all the sheets subsequently studied by the author may be in the same herbarium, and where isotype duplicates are available, subsequent botanists need not apply for the original material, especially in cases where such material is not easily loaned nor allowed to be photographed. There are also cases where the original notes have been placed in the herbarium on wrong sheets during the course of mounting or remounting the same. In view of this, unpublished herbarium data should be used with the greatest caution, and must not be allowed to form the sole or even the principal basis for rejecting a typification made on published information. Much confusion has often been created by overlooking this principle (cf. Furtado in op. cit. X, 1939, pp. 330–335). However if no lectotype has been selected, such data might provide excellent clues for the valid typification of the taxonomic group. It is essential also that the lectotype should not be lightly chosen, and without any necessity (Furtado in op. cit. IX, 1937, pp. 296–299). That by a wrong selection of a type the whole series of subsequent studies may be misdirected is evident from the case of *Rhus filicina* DC. (1825) typified in Art. 51 Note 1 and Note 3 (examples in the accompanying proposals) (see also Discussion 21 below).

21. Typification of Names with a Meaning

From time to time one comes across botanical names whose special meaning contributes to make them treacherous typification-quizzes. The elements which botanists have to consider in such cases are two, namely: (1) the root of the name itself which refers to the collector, locality, ecologic conditions, vernacular name, economic uses, or to some such data found on the label or sheet of one specimen; and (2) the validating description based primarily on another specimen. Which out of the two specimens should be chosen as the lectotype?

From the type concept as elaborated in Art. 15, 18 and 59, it is obvious that the nomenclatural entity must be typified on the specimen on which the validating description was based; the particulars derived from wrongly assigned specimens must therefore be ignored (see previous Discussion 20).

Should it be decided that a name must be typified on the type that formed the source of the name and not on the one that formed the chief basis of the description, then such a ruling would be tantamount to giving a permission to

Vol. XII. (1949).
establishing a taxonomic group merely by indicating the specimen and its collector, locality, ecology or vernacular name. It must not be overlooked that often names are taken from imperfect specimens, useless for any precise identification, whereas the descriptions are drawn from better material. Several authors have founded the names of genera and species of orchids on clues found on imperfect syntypes in the herbarium, but have based the validating descriptions on perfect living material. It is obvious that, in such cases, what validated the name is the description based on the type studied. To ignore this and to disregard the type of the validating description in order to follow a line of the least resistance in typification is to torpedo the type basis concept altogether. The principle of typifying a taxonomic group having two "types" of the afore-mentioned categories is in no way analogous to the principle adopted in typifying a new combination whose instatement has been accompanied both by a new description and the citation of the validating basynym. Here the epithet is attached to the type of the description of the basynym and so the author of a new combination is not free to apply it to another type and description. On the other hand, a name created for a new taxonomic group has to be interpreted on the types of the principal part of the description. This interpretation of the taxonomic group has nothing to do with the derivation of the name; for, the purpose of giving a name is not to indicate the characters or the history of the group but to supply a means of referring to it (Art. 15). This contention might seem contrary to the Rec. XV (f) in the Rules; but the fact that a principle has been embodied in a recommendation is a clear proof that it is not obligatory. The purpose of Rec. XV (f) is to discourage names being made from such root-words as might mislead inexperienced inquirers to erroneous conclusions. It is not meant to be applied in typifying names already made.

Thus, in the case of Carex Oederi Retz., NELMES (Journ. Bot. LXXVII, 1939, p. 301) has shown that RETZIUS based his specific description not on Oeder's figure (a syntype cited), but on a specimen identical with C. pilulifera L. Later RETZIUS himself recognized the correct identity of the species and made a reduction accordingly. If RETZIUS's specimen were a new species and not identical with C. pilulifera, then C. Oederi would have been used as the legitimate name for the species. To say that, in such an event "it would have then been logical, not to call the new species C. Oederi, but to give a new name, such as Retzi" (Airy-Shaw in Kew Bull. 1947, pp. 35-37) is not a logical procedure. To be logical the first botanist to
recognized the *mixtum compositum* should have the liberty
to typify the species on any one of the two syntypes on
botanical grounds (see Discussion 19). The derivation of
the word would not be a good botanical ground for making
such a choice. In publishing the variety *Aristida capensis*
var. *Dieterleniana* Schweickerdt (Kew Bull. 1939, p. 653)
the author indicated (not without reason) *Celiers II* as the
type and not *Dieterlen 1205*. In *Ormocarpum Kirkii, *
SPRAGUE and MILNE-REDHEAD (Kew Bull. 1934, pp.
42–43) have shown that *Kirk's* specimen was imperfect and
that the description was primarily based on *Hildebrandt*
the specific epithet was derived from a Rumphian name, the
validating description was based on an Indian specimen
(both the Rumphian plate and the Rumphian description
being pre–1753 should not have any status except that of a
herbarium specimen and its manuscript description in the
herbarium, none of which are admissible for effecting the
validation of a name by reference). But apart from this,
RETZIUS (Obs. Bot. iv, 1786, p. 20) recognized the *mixtum
compositum* in the Linnean species and excluded from it the
Rumphian syntype as the discordant element. This typifica-
tion was generally accepted until challenged by MERRILL
(Interp. Rumph. Herb. Amb., 1917, p. 88) on what are in
my opinion erroneous assumptions. This challenge was
upheld by FISCHER (Kew Bull. 1934, pp. 398–400) on the
derivation of the trivial epithet of the specific name, and
recently by AIRY-SHAW (op. cit. 1947, p. 36), because
"Linnaeus adopted, from Rumphius, the geographical epithet
amboinica". I contend that in the interest of stability and
finality of names the typification made by RETZIUS should
be adopted. (For criticism of Merrill's and Fischer's views
297–298).

Another example worth considering is the typification of
Eranthemum L. (1753) by SPRAGUE in Kew Bull.
(1926) 98. Here SPRAGUE confuses the issue by saying
that *E. capense L.* (1753), the only species under the genus,
"was based on a plant collected in Ceylon by Hermann, and
described by Linné under the name *Eranthemum* in Fl.
Zeylan. 6 n.15 (1747) and Amoen. Acad. i. 384. In Sp. Pl. 8
Linné unfortunately confused this with a Cape plant."
This statement of SPRAGUE suggests that the binomial
E. capense was originally given to a Ceylon plant but that
later LINNAEUS was confused and adopted the name also
for a Cape plant. Actually *E. capense* was first instated in
1753 and it then included elements from two sources as far
as the citation of references were concerned: Ceylon and the

Vol. XII. (1949).
Cape; but under the habitat LINNAEUS mentioned only "Aethiopia" which included the Cape but not Ceylon. In Species Plantarum (1753), which is the starting-point book for the nomenclature of the genus and its species, LINNAEUS need not employ Eranthemum in its pre-1753 sense; under the Rules he is free (retrospectively) to give the name in 1753 any sense he liked. If he applied it to a Cape plant, he cannot be said to have misapplied the name. Further since in Sp. Pl. (1753) the genera are validated merely by mention of the species (an exception to the usual procedure Art. 41 and Art. 42), Eranthemum, when typified, should include E. capense. However, those who follow RADLKOFER (Sitz. Kaiser. Bayr. Acad. XIII, 1883, p. 285 et annot.), KUNTZE (1890–98 and 1904) and SPRAGUE, and accept references back under the same name (invalidated under Arts. 42 (2) and 44 (2)), take Eranthemum as having been validated by reference to a previous description under the same name though this previous description and name had a different meaning. On this basis they typify the genus Eranthemum on the Ceylon plant mentioned by SPRAGUE above, but generally transfer the binomial E. capense sensu typico (the African plant) to another genus. In other words these botanists remove from Eranthemum L. (1753) the very binomial or species (E. capense) that validated the genus and is the type of the genus, a procedure quite contrary to Arts. 51–52 of the Rules.

The case of Eranthemum appears to be as follows: Before 1753, LINNAEUS based the genus on HERMANN's specimen from Ceylon; but in 1753 he found a specimen from the Cape which agreed well with his generic conception of Eranthemum. This specimen, which was also described by HERMANN in the reference quoted by LINNAEUS under E. capense, was from a plant grown from the seeds sent from the Cape by OLDENLAND. Could it not be that Eranthemum was wrongly attributed in 1747 to Ceylon? HERMANN had collected both in Ceylon and in the Cape, and many of his specimens were mixed in mounting. LINNAEUS, however, had not at the time HERMANN's Ceylon specimen with him to clear these doubts (fide R. BROWN, Prodr. Fl. Nov. Holl., 1810, p. 332). But he knew that the Cape plant was a new species and required a binomial under his new scheme. LINNAEUS therefore gave the Cape specimen the binomial E. capense and therefore mentioned only "Aethiopia" under the habitat, and excluded Ceylon though he gave a reference to the Ceylon specimen also. It is this binomial that validated the genus.

Gardens Bulletin, S.
There was no mistake about the specimen being a new species or from the Cape. Reference to a previous description under the same name does not validate the genus (Art. 42–2), but serves to show its previous history. The mistake attributed to LINNAEUS is attributable only when references to previously published descriptions under the same name are admitted against Art. 42 (2), and LINNAEUS is deprived of the right to give in 1753 any sense he liked to a previous name. The genus Eranthemum should therefore be typified on *E. capense*, as this binomial validated the generic name; and this species not only included OLDENLAND’s specimen from the Cape but was stated to be from Africa only.

It may be noted that ALSTON in Handb. Fl. Ceylon VI (1931) 226 and 228, uses Daedalanthus R. Anders. and *D. fastigiatus* (Lamk.) Alston for Eranthemum *L. sensu* Radlkofen (1883) and *E. montanum* Roxb. respectively, and Pegafetta Adans. and *P. malabaricum* (Clarke) Alston for what has been called Pseuderanthemum Radlk. and *Ps. malabaricum* (Clarke) Fischer, thus retaining Eranthemum *L.* and *E. capense* L. for the Cape plant typified on Oldenland’s specimen. A good deal of confusion made in these genera can be best removed by following ALSTON’s typification of Eranthemum, especially when Pseuderanthemum has also been misused. (In a recent paper BREME-KAMP and NANNENGA-BREMEKAMP have typified both Eranthemum and *E. capense* on the Ceylon plant, but have not discussed the previous typifications (Nederl. Akad. Wet. Verh. (Sect 2) XLV no. 1 (1948) 33).

22. Later Homonyms

Types have been unnecessarily emphasised in the definition of a later homonym, so that it seems possible to reject an earlier valid name as “illegitimate” and to accept an identical later combination with a different authorship or date as legitimate. Thus, for instance, *Pseudotsuga taxifolia* (Lamb.) Britton (1889), although admitted as valid with a force to render a later name with a different type “illegitimate” (improriable), has itself been rejected as “illegitimate” and considered without any force to render *Ps. taxifolia* (Lamb. ex Poir) Rehder (1938) “illegitimate”, because the latter combination has the same type as the former; accordingly the latter combination has been declared as the legitimate (correct) name for the Douglas Fir (Sprague and Green in Kew Bull., 1938, pp. 79–80; for further similar examples see Furtado in Fedde, Repertorium XLIV, 1938, pp. 256–264).

Vol. XII. (1949).
But the Rules provide that an alteration in diagnosis and in circumscription, however considerable, but "without the exclusion of the type does not warrant the citation of an author other than the one who first published its name", though the authorship of considerable emendations may be indicated (Art. 47). In the aforementioned case, however, SPRAGUE and GREEN have given to the authorship of names an importance unwarranted under Art. 47, so that, under their view, the authorship would become an important part of the botanical name. They have overlooked the fact that the correct citation of authorship is not a problem that concerns validity, priorability or legitimacy of a name; it affects only its propriety. If the view of SPRAGUE and GREEN were valid, then the rejection of homonyms established by different authors would become meaningless.

This opinion of SPRAGUE and GREEN on homonyms does not accord with the spirit of the Commentary made by the British botanists responsible for the present wording of the rule of homonyms. Declaring that it is a sheer waste of time to oblige botanists to undertake critical research to find out whether or not a prior homonym is legitimable in a given position (p. 5), the Commentary states that "this Article prohibits the duplication of names which have been published with a description (or reference to a former description), even if they are illegitimate. It will stabilize nomenclature, especially in the numerous cases where there is doubt or dispute whether a prior homonym is illegitimate or not". (Brit. Proposals, 1929, p. 43). Professor REHDER states in the Preliminary Opinions, Amsterdam, 1935, Art. 47 bis, p. 14, that the meaning of a name "should be clear even without author citation, since the author is often omitted, particularly in applied botany and popular publications. We have to consider also the use of botanical names outside of strictly taxonomic work."

From the foregoing I conclude that the opinion held by SPRAGUE and GREEN on the legitimacy of orthographically similar names when an earlier one is rejected, cannot be maintained. Due amendments are therefore proposed to make the rule of homonyms more precise (see Arts. 61A–B and Art. 52B–D, and also discussion on superfluous names in 14–15).

However Art. 47 could be made more explicit as to the manner of citing the correct name for the Douglas Fir. From Art. 69 it looks as if Ps. taxifolia Britton (= Ps. taxifolia (Lamb.) Britton), and not Ps. taxifolia (Lamb. ex Poir.) Britton emend. Rehder or Ps. taxifolia (Poir.) Rehder, is the correct way of expressing the authority of the first valid and priorable instatement of the name.

Gardens Bulletin, S.
23. Specific Epithets under an Impriorable Generic Name

Later homonyms, unless they be conserved generic names, are impriorable, that is, they are valid but cannot be included in priority considerations. This should have deprived specific epithets instated under an impriorable genus of the right of priority even outside the genus. Thus, since Rademachia Thunb. (1776) is a later homonym, the combination _R. integra_ Thunb. (1776) can never be legitimately used, and so when THUNBERG established a new genus Sitodium (1779), the combination _S. macrocarpon_ Thunb. (1779) should have been the legitimate name for the species. This procedure can be defended also under the strict wording of the present Rules which prescribe that only “legitimate” combinations (that is, those satisfying all the rules—Arts. 2 and 45) should be used in priority considerations. But as this procedure would not contribute to economy in specific epithets and would also lead to ignoring important contributions made to the systematry of the genera bearing names which are later homonyms, and since later homonyms themselves are made usually in ignorance of the existence of the previous homonyms, the modern tendency has been to allow priority to the specific epithets instated under an impriorable genus. Further it must be borne in mind that all specific epithets instated under an impriorable genus form an obstacle to the formation of exactly similar combinations under an earlier priorable generic homonym. These reasons therefore justify the custom of allowing priority to the specific epithets instated under an impriorable generic name. An appropriate amendment has been proposed in the Rules to clarify this problem.

However, an admission of priority to such epithets should not be mistaken as an opening for admitting as priorable, the specific epithets instated under no genus, or under an invalid genus, or under a generic name which was intended to be but was not actually instated. As the epithets instated under such circumstances are invalid, the question of their priorability does not arise. The invalidity of specific epithets under an invalid or no generic name might seem so axiomatic under the binomial binary system of nomenclature for species (cf. Linnaeus’s Aphorisms 257 and 286 and comments on them in Critica Botanica), that one might well question the need of emphasising the fact here; but Discussion 24 will show that there are nomenclaturists who question the validity of the axiom, and that there is a definite attempt to amend the Rules so as to admit such specific epithets as valid. The reader should therefore bear in mind the status of specific epithets instated under a

Vol. XII. (1949).
valid but impriorable generic name, so that, in the following discussion, the distinction between it and the status of the epithets attached to no generic name or to a generic name that has no status under the rules may be clearly recognized.

24. "Binary" Names under an Invalid Genus

Art. 67 states the conditions under which a generic name must not be admitted even when otherwise it seems satisfactory under Arts. 25, 37 and 42. But since WALTER's "genus" Anonymos satisfies none of these Articles, there should not be any doubt of its being invalid, i.e. status-less under the Rules. In fact the legislators have singled out this term as an example of a word that cannot be considered as a valid generic name under Art. 67 (1); no further doubt should therefore arise about its invalidity. And it is obvious that, from the very definition of the binary name, the specific epithets instated under Anonymos should be equally invalid (cf. Linnean Aphorisms 257 and 286, and Art. 27 of the 1935 Rules). Yet SPRAGUE proposes that, in the following amendment, the Congress should state in the form of a rule that the specific epithets preceded by the word Anonymos are invalid even though the proposed rule applies to that particular word only:

"Binary combinations of a specific epithet with the word Anonymos are illegitimate, since the word Anonymos is not a generic name (Art. 67(1)). Such combinations are not taken in consideration for purposes of priority of the epithet concerned.

"Example: The binary combination, Anonymos aquatica Walt. Fl. Carol. 230 (1788) is illegitimate. The valid name for the species concerned is Planera aquatica J. F. Gmel. (1791), and the date of the epithet aquatica, for purposes of priority, is 1791. The species must not be cited as Planera aquatica (Walt.) J. F. Gmel. If, however, it is desired to indicate that the epithet originated with Walter, the name may be cited as Planera aquatica [(Walt.)] J. F. Gmel." (Kew Bull. 1939, p. 318, sub Art. 27).

The Rules empower the Congress to suspend, in certain cases, the application of the rule of priority; but even then it is better for the Congress not to exercise this power if the effects of the proposal can be secured by applying the existing rules (cf. Furtado in Gard. Bull. Straits Settl. IX, 1937, p. 253). But when the Congress is asked to give a special decision on a particular case and embody that decision in the form of a rule applicable to that case only, it is time for the Congress to call a halt and consider whether such a procedure might not create an undesirable precedent and affect seriously the normal practice. Moreover, special decisions, when given unnecessarily, and/or embodied in the form of a special rule applicable to that case only, often

Gardens Bulletin, S.
mislead taxonomists into thinking that the results secured by a special decision or rule were otherwise not attainable. This sows a seed for the future misinterpretation of the rule applicable to the case. If the existing rule were invoked and the deductions were accordingly made, the decision would have reinforced the rule and prevented its future misinterpretation, a procedure, I believe, followed with great effect by zoologists. When advisable, the case could be cited as an additional example illustrating the application of the particular rule. Hence there are grave objections to adopting SPRAGUE's proposal. I note also that the editors (Camp, Rickett and Weatherby) of the 1947 special edition of the International Rules of Botanical Nomenclature object to cluttering the main body of the Rules "with decisions on individual cases" which "might very profitably be relegated" to appendices or to a series of opinions.

But apart from this novel way of trying to outlaw the alleged "binary" combinations (for the Congress has disapproved the principle for rejecting properly instated specific names) there are also serious objections to the wording of the proposal itself; for the invocation of Art. 67 (1) means that, since WALTER did not intend to adopt Anonymos as a generic name, the specific epithets cannot be taken to have been published validly. Thus put, the reason for rejecting WALTER's specific epithets under Anonymos misdirects the whole issue; for one conclusion from this premiss would be that, had WALTER intended Anonymos to be a generic name, then 44 specific epithets published by WALTER under Anonymos would have been valid, despite the fact that Anonymos was never described as a taxonomic group to satisfy Arts. 37 and 42 or 43. So the word "binary" in Art. 27 would be synonymous with biverbal, in which sense SPRAGUE has used the word in the proposal. This would mean, therefore, that specific epithets could be validly instated under a status-less (invalid) generic name, a conclusion I have nowhere found seriously maintained except by a few botanists who use the word "binary" very loosely to mean biverbal (cf: Sprague and Riley in Journ. Bot. LXII, 1924, p. 7 and Sprague and Hubbard in Kew Bull. 1933, p. 15 and 1936, p. 319).

The principle involved in the above-mentioned proposal goes against the essence of binary binomial nomenclature itself. Its admission would defeat the very purpose of prescribing binary binomial nomenclature to species. In arguing the fallacy of this theory and the contradictions involved, I had also discussed the invalidity of the specific epithets proposed by WALTER under Anonymos, not only
under Art. 27, but also under the rule of nomina vel epitheta provisoria, for all these epithets were published in the hope that future botanists would put them under their proper genera, WALTER himself not having assigned them to any known genus. It is true that some botanists attributed the epithets to WALTER, but it has already been shown that such attributions are wrong (retrospectively) under the present Rules and that these epithets stand on the same footing as the (retrospectively) invalid names taken up from WALLICH’s catalogue by subsequent botanists and attributed to WALLICH. WALTER’s specific epithets were shown to have been validly instated by GMELIN (1791) and others, who therefore become the real authors of the epithets under the Rules. In such matters custom cannot be invoked in order to nullify a clear law (Furtado in Fedde, Repertorium XLIV, 1938, pp. 256–264).

By accepting the definitions of the terms binomial, binary and biverbal indicated in Discussion 2 of this paper, it becomes clear that a specific name which indicates only one description (unless that description be of the descriptio generico-specifica class) can be neither a binary nor a binomial, though it may be a biverbal. The specific epithets “instated” under Anonymos by WALTER, like such biverbals as Villebrunnea integrifolia Gaud. and V. crenulata Gaud. are, therefore, neither binary nor binomial, for in each case the combination indicates only one description. Hence these combinations deserve no recognition from botanists, though Villebrunnea was intended to be a generic name but never associated with any generic description (cf. Furtado in Bull. Jard. Bot. Buitenz. XVI, 1939, pp. 116–119). In fact Villebrunnea does not come under Art. 67 at all; for Art. 67 deals with names which are inadmissible under the Rules even when they are properly published and are accompanied by generic descriptions. It does not deal with cases where admissible generic names are not accompanied by generic descriptions, for the obvious reason that names without descriptions are invalid (Arts. 37 and 42). However it has to be admitted that the examples given in Art. 67 are not carefully chosen to illustrate the various points dealt with in the rule, and Anonymos is one of the ill-chosen examples.

The use of the word “binary”, and the way of invoking Art. 67 (1) in the amendment proposed by SPRAGUE are therefore misleading. The epithets concerned are invalid (without any status) under the existing rules (see also Furtado in Philipp. Journ. Sc. LXIX, 1939, pp. 467–469). I contend therefore that the proposed amendment should not be approved.

Gardens Bulletin, S.
As to the manner of citing the authority of an invalid name, when validated by another author, the subject is to be dealt with in Art. 48. But I doubt the advisability of quoting the author of an invalid name in a double bracket.

25. The Fallacies of Implicit References

In Kew Bull. (1937) 475–476, under the title of "Epipogum or Epipogium" SPRAGUE and GREEN have defended a procedure based on two fallacies, namely, (a) the incidental mentioning of invalid or provisional names constitutes a definite acceptance of the names, a procedure condemned by Art. 37; but, since this assumption does not carry one very far, for the names would still remain without a valid description, and, therefore, invalid, the second assumption is made, that is, (b) the name incidentally mentioned is validated by an implicit reference to a description published previously under the same name.

In disputing this theory of implicit reference, I submitted that, in order to decide whether or not the author wished to adopt an older name definitely, the easiest way was to apply the provision in Art. 42 (2), which clause, though ignored by the two authors, invalidates, like Art. 44 (2), references to previous descriptions under the same name. From 1905 this provision forms an important part of the Rules, being then introduced to proscribe principally the procedure defended by KUNTZE who, by admitting reference back under the same name to pre-1753 literature, had effected over 30,000 name changes (cf. Furtado in Gard. Bull. Straits Settl. X, 1938, pp. 162–72). Nevertheless, SPRAGUE has now made the proposal to omit the phrase under another name from both Arts. 42 (2) and 44 (2). As an approval of this proposal would cause many name-changes, and even remove the definiteness of many other names, a discussion on Art. 44 (2) may not be out of place here (the problems concerning Art. 42 (2) having been already dealt with in my paper referred to above). However it may be noted here that, when SPRAGUE states that many Linnean generic names have been validated by reference to pre-Linnean descriptions (Kew Bull. 1939, p. 323, sub Art. 42), he overlooks the fact that, under Art. 20, if any descriptions are to be associated with the Linnean genera of 1753 and 1762–63, they are the first subsequent descriptions in LINNAEUS's Genera Plantarum ed. 5 (1754) and ed. 6 (1764). Even if the phrase were omitted, the contention of SPRAGUE would, therefore, be erroneous as applied to the Linnean generic names.

Vol. XII. (1949).
In proposing to omit the phrase under another name from Art. 44 (2), SPRAGUE states that "this omission is required to provide for the case of a pre-Linnean binary specific name validly published by a post-Linnean author with reference to the pre-Linnean description." (Kew Bull. 1939, p. 323). This is a very misleading statement. The binary binomial system of nomenclature for species was consistently employed for the first time in 1753. In the case of biverbal specific names of pre–1753 authors, there are many doubts whether the names are merely binary or biverbal, or truly binary biverbal binomials. Sometimes they are biverbal generic names, and therefore unitary; in some other cases they are biverbal and binary but not binomial; in many cases the names are biverbal binomial for forms and varieties, and so not binary; or when binary and binomial, the genus is based on characters of habit and uses, not on floral characters. This difficulty is met with also in the case of those post–1753 books in which the Linnean binomial system was not consistently adopted. To obviate this difficulty the Rules have interdicted all the specific names in such books, even those post–1753 names that seem to be clearly binary, biverbal binomial specific names (Art. 68 (4); also Furtado in Bull. Jard. Bot. Buitemz. XVI 1939, pp. 116–119). Judging from the loose sense in which the term "binary" has been employed, the tendency to admit such names would still be great if the clause under another name were omitted. Furthermore, LINNAEUS, Spec. Pl. (1753) and (1762–63) are taken as a sort of check-list wherein are registered all the species till then known to science, and wherein characters are shown in order to be able to distinguish between them. Should a pre–1753 species having a binary, biverbal binomial name be found not to have been taken up in the many editions of Species Plantarum and in other descriptive check-lists (e.g. Lamarck's Encyclopédie, Persoon's Synopsis Plantarum, and Don's General System of Botany and Gardening), it would be better now to deny validity to such names even though the names were registered or casually mentioned, but not described, in some lists, catalogues, theses, itineraries or discussions; many name-changes and complications would result by allowing validity to these names (cf. Furtado, 1938 cited above).

Thus, for instance, many pre–1821 names of Fungi Caeteri recorded in STEUDELS Nomenclator (Cryptogamia) (1824), would have to be revived if the phrase under another name were omitted from Art. 44 (2). The many involved arguments and assumptions made for getting Poinciana spinosa admitted as valid (Sprague in Kew Bull.

Gardens Bulletin, S.
1931, pp. 91-96) could be easily disposed of by referring the whole question to Art. 44 (2) which SPRAGUE has ignored and which he now seeks to eliminate from the Rules. In all such cases the clauses Arts. 42 (2) and 44 (2) are so to say labour-saving devices for botanists who might have otherwise to consider lengthy arguments before deciding the validity or invalidity of names. By way of illustration I shall discuss at some length the case of *Petroselinum crispum*:

In the Kew Hand List of Herbaceous Plants ed. 3 (1925) 122, the name *P. crispum* Nym. is listed without any description. No one is bound to take any notice of it, because it has not been published before as a valid name, nor is there given under it any definite reference to a previously valid description. But AIRY-SHAW discovered that the name was published in 1879 as a synonym of *P. sativum* Hoffm. and that it was apparently intended to be an isonym of *Apium crispum* Mill. This does not carry one any further, for combinations published in the synonymy are inadmissible (Art. 40), a fact also admitted by AIRY-SHAW though he allowed validity to *P. crispum* Nym. in the following manner:

But the combination has been taken up in the Kew Hand List of Herbaceous Plants ed. 3, 122 (1925), and attributed to Nyman; and it appears that it must be regarded as validly published in that place (cf. Sprague and Green on implicit citation in the case of the generic name *Epipogium*, in Kew Bull. 1937, 475) (Kew Bull. 1938, pp. 256-258).

Later AIRY-SHAW's attention was drawn to the fact that *P. crispum* (Mill.) Nym. was a binomial combination published for a variety under *P. sativum* Hoffm.; and AIRY-SHAW admits that "varietal binomials" are inadmissible under the present nomenclatural system (Art. 28). But under the theory of implicit reference he finds the following way out of this difficulty:

The first valid use of the combination *Petroselinum crispum* (i.e. for a species) is apparently in the Kew Hand List of Herbaceous Plants 122 (1925), and the attribution to Nyman may be taken as validating reference to Nyman's well-known work, where the author of the name-bringing synonym, *Apium crispum* Mill., is cited in brackets. There is clearly no doubt as to the plant intended either by Nyman or by Miller, nor as to the works of those authors intended by the Kew Hand List and by Nyman respectively (Kew Bull. 1939, p. 168).

It may be remarked here that the question of validity or invalidity of a name is not decided by doubts, or the absence of doubts, about the plant intended; otherwise almost all the names in WALLICH's Catalogue would have been valid, for they were accompanied by numbered sets of plants distributed to many botanical institutions. The

Vol. XII. (1949).
alleged obviousness of the work intended by the compilers of the Kew Hand List is not as easy to understand as AIRY-SHAW imagines, for compilers of such Hand-lists do not usually consult original works, but go by herbarium determinations. Often invalid combinations get unwittingly into such Lists. It is more probable that the compilers had never intended to publish a new name, nor to refer to any work, but had merely adopted *P. crispum* Nym. because of the authority of the botanist who had determined their specimens in the herbarium. What the determining authority intended by the binomial is not easy to decide; the binomial might have stood for the variety as named by NYMAN. If such listings are admitted as valid publications of names, then one could also argue that: all pre-starting point names; the names published in works wherein the binomial system has not been consistently employed (Art. 68-4); provisional names; and invalid manuscript names cited in the synonymy, become valid when they are registered in subsequent indexes or nomenclators. Further the mere registration of varietal binomials as if they were specific names would also constitute the valid publication of the binomials as specific names. Even a casual mention of such an invalid name and its author by a careless worker would oblige botanists to admit it as valid and investigate as to what it originally meant, where it was published, the Rules making no distinction between well-known and less known works. This would mean that botanists should possess a list of all the invalid names published before and after the starting points, despite the fact that such names have no status under the Rules. Perhaps the compilers of such lists would then be considered as the real validating authors of the invalid names, since the mere registration has been claimed to give validity to previously invalid names.

From the foregoing it is evident that numerous complications will arise by omitting the phrase "under another name" from Art. 42 (2) and 44 (2). This phrase was intentionally inserted in the Articles of the 1905 Rules. If the phrase were retained in Art. 42 (2), many of the proposals to conserve generic names already in use would be unnecessary. Thus the proposal to conserve *Hippeastrum* Herbert (1821) versus *Leopoldia* Herbert (1821) made by SEALY to the 1940 Congress (Kew Bull. 1939, pp. 49-68 and 328) becomes meaningless, for what is already valid and legitimate does not require to be conserved versus a name which, under the existing Rules, has no status and no claim to recognition by botanists (invalid).

Gardens Bulletin, S.
26. Alternative Names and the Will of the Congress

Discussing the simultaneous publication of *Cymbopogon Bequartii* De Willd. (1919) and *Andropogon Bequartii* De Willd., CROIZAT (Journ. Arnold Arb. XXII, 1941, pp. 133–142) states as follows:

De Willdeman believed either that these two names were synonymous in the accepted sense, or that they were not. If he did believe that the names were synonymous, he erred in publishing two names where one was sufficient, the other being superfluous (Art. 16, Art. 60(1)), or illegitimate (Art. 40); if he did not believe, he clearly acted to design a new combination in anticipation of the eventual acceptance of the group, which is a patent violation of Art. 37ter, and creates a nomen provisorium (p. 137).

The first part of this argument is faulty, because the two names, being in a different position, cannot be "superfluous" under Arts. 16 and 60 (1). As to the second part, Art. 40 does not apply because *Andropogon Bequartii* was not "merely cited as a synonym"; it was published as an alternative name to *Cymbopogon Bequartii*, in order first to indicate that there are two current views about the major taxonomic group, both accepted as taxonomically valid, and then to prevent name-changes being made by others which could be done by the author himself. In discussing this principle in some detail, I had mentioned the complications made by persons who were after easy honours (Gard. Bull. Straits Settl. IX, 1937, pp. 239–240). But I have also come across some examples where botanists, in order to avoid criticisms of the type levelled by CROIZAT, have published the names in one periodical, and the alternative names in another, making it thereby difficult for workers on the groups to collect the necessary references. DE WILLDEMAN could have published either of the two names, and botanists would have accepted the name as valid; and CROIZAT himself would not have any objection to accepting the second name had DE WILLDEMAN published it after the first. CROIZAT's objection is because the two names have been published simultaneously and have saved workers the trouble of looking up two different periodicals for the information that could have been obtained in one.

As to the third part of the argument offered by CROIZAT, that alternative names are provisional, to be outlawed under Art. 37 ter, it must be recalled that this point received a good deal of consideration from the Congress at Amsterdam. The President (Dr. E. D. MERRILL) pointed out that the provisional names were against the spirit of the Rules, but that alternative names were not provisional names. From the Proceedings it is

Vol. XII. (1949).
evident that the Congress was of the opinion that, if alternative names were placed on the same footing as provisional names, then none of the alternative names could be accepted as validly published. Thus, in the case discussed both Andropogon Bequartii and Cymbopogon Bequartii would have to be rejected. In view of this and also in view of the complication that would arise as to the authorship, Prof. W. ROBYNS “suggested that, as a matter of practical convenience, such alternative names should be treated as valid”, and later amended the proposal by eliminating the word “seu eventuale” which, according to the discussion recorded in the Proceedings, referred to alternative names. The proposal thus amended was adopted by the Congress (Proceed. I, 1936, pp. 364–366).

There was no other decision to validate alternative names; but the fact that a proposal to reject both provisional and alternative names was amended with the express object of excluding alternative names from the effects of the proposed rule is a sufficient proof that the Congress regarded alternative names as valid. This conclusion is further strengthened by the different summaries of the decisions taken at the Congress, published in Chron. Bot. II (1936) 38, Journ. Bot. LXXIV (1936) 75 and in Kew Bull. (1936) 186. I have not seen any correction issued to these announcements or to the Proceedings.

It is true that the wording of Art. 37 ter is not happy. That the definitions of provisional and alternative names require further clarification so as to prevent conflicting interpretations of the rule was pointed out in my paper quoted by CROIZAT (Furtado in Gard. Bull. Straits Settl. IX, 1937, pp. 230–232 and 239–240). And this faulty wording of Art. 37 ter is now the sole basis of CROIZAT’s not interpreting the Article on the evidence made available in the discussion that preceded the approval of the rule in the present wording. Hence CROIZAT concludes that the summary given by SPRAGUE of the Congress decisions is erroneous as far as alternative names are concerned, and therefore maintains that Art. 37 ter, as approved by “sovereign will of the Congress” invalidates precisely those names to safeguard which the original proposal was amended.

Previous practice of quoting alternative names was very conflicting, a fact also made obvious during the discussion of Art. 37 ter at the Congress. Hence the way in which an alternative name has been registered in Index Kewensis cannot be invoked as illustrating an “established custom” under Art. 5. Were a name invalid (without any status under the Rules), the editors of Index Kewensis should not

Gardens Bulletin, S.
have registered it at all. Besides, alternative names have not been uniformly registered in Index Kewensis, e.g. Syzygium paniculatum Gaertn. and Eugenia paniculata Banks ex Gaertn. (1788), Claytonia Washingtonia Suksdorf vel Montia Washingtonia Suksdorf (1898) and Lithocarpus vel Pasania Rodgeriana A. Camus (1931). Further if the previously established custom did not approve of these alternative names, then botanists like DE WILLDEMAN could be said to be the breakers of the custom; but the opinion that “any subsequent author who took up the name Andropogon Bequaertii would certainly attribute it to DE WILLDEMAN” (an opinion voiced at the Congress both by ROYNS of Bruxelles and HANDEL-MAZZETTI of Vienna), shows that the previous “established custom” was not what CROIZAT has it to be.

In view of this the botanical public is justified in considering that the Congress has not only accepted alternative names “as a matter of practical convenience”, but also condemned expressly the provisional names. Our endeavour, therefore, should be to find a more appropriate terminology for framing the rule in such a way that the “sovereign will of the Congress” shall be unequivocal.

BAILEY (Gent. Herb. II, 1932, pp. 430–433), who upholds the validity of alternative names and quotes many instances, pleads that the Congress should be more precise in defining what a synonym is, so as to prevent confusion between alternative names and synonyms. He cites an instance of an extreme form of multiple nomenclature which, I believe, is rare: Sedum-Cotyledum-Echeveria-Diodostemon clavifolia Alwin Berger in Gartenflora LIII, p. 205. It is possible that many alternative names published in the last two centuries have been overlooked, and if their resuscitation now would cause confusion and if there is no way of distinguishing between synonyms and alternative names published in early literature, it would be advisable to consider all long overlooked or ignored alternative names published before 1905 as invalid, and to oblige authors in future to indicate in a definite way whether a certain name is alternative or a synonym (cf. Linnean alternative combinations published under Melilotus sub Trifolium which have been long ignored).

27. Responsibilities of Publishers

The 1930 Congress decided that the validity of a paper reserved for private circulation should not be admitted unless distributed to the institutions to be specified under the Rules; and I tried to show that, unless this specification included certain institutions interested in the work and

Vol. XII. (1949).
unless the distribution were made through a Committee, grave complications would certainly arise (Chron. Bot. III, 1937, pp. 337-339, and in Gard. Bull. Straits Settl. IX, 1937, pp. 273-279). In the latter paper a scheme was worked out so as to secure a priority in distribution for the interested institutions; for I believe validity should not be allowed to a paper, say on the Indo-Malaysian flora, if the distribution to all the Indo-Malaysian institutions is refused or ignored by the idiosyncratic author of the work meant only for private distribution. A distribution to institutions not interested in the work serves no useful purpose; these institutions may even destroy the books which are useless to them. If such a Committee had regional representatives in different parts of the world, the principle would have worked even during the last great war. The regional representative could have undertaken to reserve copies for other institutions to which copies could not be sent owing to war.

However there is now a move to abandon the specification of the institutions required in Art. 36. If the list is to be abandoned, the responsibilities of publishers and/or of authors must be clearly stated; for, owing to the high cost of printing and to the paucity of funds, there is a great danger of systematic papers being published in periodicals least likely to come to the attention of the interested public (cf. examples in Gard. Bull. Straits Settl. IX, 1935, p. 113 and XI, 1939, p. 21 sub Art. 36).

There is also the question of separates. These offer the author an effective means of establishing an exchange with his colleagues. Many publishers, in order to secure first class contributions to their periodicals, are therefore obliged to supply to the author gratis a certain number of separates of the paper. But satisfying the demands of the individual contributors and sending a few complimentary copies for reviews or to some institutions are not synonymous with meeting the nomenclatural requirements for rendering the contributions effective (valid). The demand by authors for separates is for a subsidiary distribution, that is, a distribution having nothing to do with valid publication of the papers. Were publishers of the periodical to make the authors individually responsible for the measures necessary to render the contributions valid, then authors themselves would individually be the publishers of their own contributions (assuming the authors take the measures in question), and the periodical would be merely a review in which the papers are published at second hand (and often with fictitious dates, because the editors of the periodicals would not know when the authors "published" their separates).

Gardens Bulletin, S.
Under such circumstances, in giving references to a new nomenclatural entity, the title and the page of the pamphlet, and not the title and the page of the periodical wherein the contribution was subsequently reprinted or incorporated, would have to be cited.

Further, without advertisements, there would be great difficulties not only in subscribing to the papers, but in preventing ineffective (invalid) papers from being passed as effective and at wrong dates. In the case of large books, the publishers are interested in the disposal of the books, at least in order to recoup the initial outlay in printing; so they feel the need of issuing advertisements in due time. But in the case of separates the author does not incur any expenses, nor is he interested in the sale of the separates. In fact any attempts to advertise the sale of a few separates received gratis may involve the author or his agents in financial difficulties. Notwithstanding this aspect of the problem, it has been recently contended that, when advance prints are supplied to the author, the publishers are justified not only in calling these prints "advance separates" of the periodical, but also in reckoning effectiveness from the date on which the prints were supplied to the author.

It is obvious therefore that publishers must be made to realise that to publish a botanical contribution does not mean to print and/or distribute it to special persons or institutions only; but it means that the publication must be made available in due time to the interested botanical public. It is evident that no objections are raised for publishing a large work in small parts or fascicles, provided these are made available to subscribers in due time; but publishers cannot transfer their responsibilities of securing validity to the paper to the author by supplying him a few copies of his paper in advance, nor is this duty fulfilled if, in addition to supplying the copies to the author, six copies are sent to be utilised in herbaria or to be reviewed in periodicals. Since at least one institution has offered this as a plea for not sending its periodicals in due time to the subscribers (by purchase or exchange) (Hochreutiner in Candollea VII, 1938, p. 517), it seems necessary to legislate on this point so as to prevent such procedures in future. Necessary amendments have therefore been proposed to deny validity to papers for which no steps have been taken to insure their distribution in due time to the interested public.

28. Orthography of Names

In Gard. Bull. Straits Settl. XI, 1939, pp. 4-7, I suggested that the subject of orthography of names be referred to a special committee, so that the question of such

Vol. XII. (1949).
cognate subjects as that of homonymy and tautonymy might be considered at the same time; for in this matter simplicity and clearness are essential to avoid equivocation. Thus, for instance, if *Nasturtium Nasturtium-aquaticum* is a tautonym under the Rules (Art. 68–3), then the binomials *Asplenium Trichomanes* and *A. Trichomanes-dentatum* are a pair of homonyms; for a tautonym is nothing but a binomial where specific epithet is homonymous with the generic name (SPRAGUE’s contention that *A. Trichomanes-dentatum* is “intrinsically invalid” under Art. 27 does not merit consideration cf. Furtado in Philipp. Journ. Sc. LXX, 1939, pp. 197–198). As numerous proposals have since been put forward regarding the orthography of botanical names, I may be excused for adding here a few more remarks on this subject (cf. also Furtado in Gard. Bull. Straits Settl. IX, 1937, pp. 249–255 and 256–258).

In the examples in Art. 70, *Sarauja Willd.* is said to be a typographic error for *Sarauia*, because WILLDENOW always adopted the latter spelling in his herbarium. This is a surprising statement, since in German (and WILLDENOW was a German) *i* and *j* have the same phonetic value, and in the manuscript *i* may be written where *j* would be employed in print. Both in German and later Latin *j* is preferred instead of *i* when it is at the beginning of a syllable. Thus Jesus, Johannis, Juventus, Majus, Malajanus and Cuius are used instead of *Iesus*, *Iohannis*, *Juventus*, *Maius*, *Malaianus* and *CuIus*; and in dictionaries it was customary to list alphabetically under *I* all names commencing with *I* and *J*. Even in Linnean books one finds *Jacc*, *Jacobaea*, *Jasminum* and *Jatropha* indexed before *Ibiscus*, *Illex*, *Impatiens* and *Ischaemum*, and the latter are followed by *Juglans*, *Juncus*, *Juniperus*, *Iva*, *Ixia* and *Ixora*. In view of this SARAUJA (spelt with *J*) cannot be considered to be a typographic error, and has therefore to be adopted as correct.

In modern patronymics, it is better to form genitives as given in Recommendation XL (a) and (b) of the Rules, even when the word has a special genitival and adjectival form in Latin. It is better, for instance, to get from *Clemens* the forms *Clemensii* and *Clemensiae*, and adjectives *Clemensianus-a-um*, than to use *Clementis* which is the genitive for both genders and also an adjective; by employing the alternative Roman method of making personal names from adjectives, *Clementinii* and *Clementinae* (genitives) and adjectives *Clementinus-a-um* are obtained. Similarly in *Magnus*, which has a generic name *Magnusia* (see Rec. XXXIX–a), it should be preferable to have the

Gardens Bulletin, S.
genitives Magnusii and Magnusiae and adjectives Magnusianus-a-um than Magni and Magnae and adjectives Magnus-a-um (which are confusable with ordinary adjectives). In modern patronymics if Franciscus and Augustus have yielded the generic names Francisca and Augusta, then the genitives should certainly be Francisci, Franciscae and Augusti, Augustae, with adjectives Franciscanus-a-um and Augustanus-a-um (or perhaps Augustinus-a-um). As to Alexander, the genitives Alexanderi and Alexanderae and the adjectives Alexander(i)anus-a-um would eliminate confusion with derivatives from the word Alexandria. In view of this the proposals made by GREEN (Kew Bull., 1939, pp. 325–236) to eliminate Magnusii from the example in Rec. XL (b) and to make other alterations seem to have been based on wrong conceptions.

The specific epithet in Libertia Laurencei Hook. f., was latinized according to the old method by substituting u for v. Here the original spelling seems to have been intentionally adopted. In the Rules (Art. 70) this example is given as a case of unintentional orthographic error, though it compares very well with Clutia where the spelling was intentional, though the word was derived from Cluyt, and Cluytia was subsequently proposed as the correct spelling of the name.

29. Tautonyms and Generic Homonyms

While dealing with "Tautonyms and Homonyms" in Gard. Bull. Straits Settl. IX (1937) 249–253, I submitted that the rules regarding tautonyms and generic homonyms were so constructed as to mislead even the best nomenclaturists. I quoted the decisions given by some leading nomenclaturists in Kew Bull. (1935) 341–544 to show "a complete absence of uniformity in principles". In some cases earlier names have been rejected apparently as "superfluous" (despite their clear validity), in order to make room for admitting exactly similar later names as non-homonymous, legitimate names. Wendtia DC. (1830), for instance, has been rejected because it was an unwarranted correction of Wendia Hoffm. (1814), and so Wendtia Meyen (1834) has been accepted as the legitimate, non-homonymous name for another group. More recently, contradictory decisions have been given by ENSIGN in Amer. Midl. Nat. XXVII (1942) 501–511 and HAROLD ST. JOHN in Proceed. Biol. Soc. Washington LV (1942) 109–112 in the case of Glossopetalum Schreber (1789) and Glossopetalon A. Gray (1853). Such conflicting views are
possible because the Rules are not clear on these points. As to generic homonyms, I shall let St. JOHN speak:

This [Art. 70] expands the brief, definite provisions of the earlier Vienna (1905) Rules, introducing qualifications and many examples. Unfortunately, some of these examples were ill chosen, and as listed partially confuse the applications of the law. Many times the writer has studied this new wording and he has tabulated the examples hoping to find complete agreement and clarity, but in vain. (op. cit., p. 110).

Further, since a tautonym is a specific name with its specific epithet homonymous with the generic name, and since little variations in specific epithets do not create new distinct epithets, the rule that outlaws tautonyms has been also one of the fruitful causes of conflicting decisions in nomenclature (cf. Furtado in Gard. Bull. Straits Settl. IX, 1937, pp. 249–255, and also Bambos Bambos and Bambusa Bambos). I have therefore proposed the deletion of the rule altogether so that tautonyms should be valid in future (Gard. Bull. Straits Settl. XI, 1937, pp. 4–7). But in order to get at the bottom of the principle involved in the examples of generic orthographic variants and homonyms, it would be better (despite St. JOHN’s remarks) to analyse here the names which, though having the appearance of homonyms, have been quoted in the Rules as examples of different, non-homonymous generic names:—

1. Rubia: a feminine noun derived from the Latin ruber-ra-\-rum, meaning red.
Rubus: a Latin name for blackberry, masculine in form.
2. Monochaete: a proper noun from Greek mono (one) and chaete (flowing hair), feminine.
Monochaetum: a latinized adjective, neuter in form, from monochaetus-a-\-um (with flowing hair) used as an adjectival noun.
3. Peponia: feminine form of peponius-a-\-um from Pepo (a pumpkin).
Peponium: a neuter form of peponius-a-\-um.
4. Iris: A Greek plant name, feminine.
Iria: probably a Malabar plant name, feminine.
5. Desmostachys: a proper noun from desmos (bond) and stachys (ear of corn), masculine in form.
Desmostachya: an adjectival noun, feminine in form, from latinized adjective desmostachyus-a-\-um.
6. Symphyostemon: from symphysis meaning to grow together, coalesce.
Symphostemon: from Greek symphys meaning to bring together, cause to grow together.
Gerardiina: from Gerardius, a latinization of Louis Gerard.
8. Durvillea: from J. E. C. D’Urville, the preposition having been joined to the surname that follows.
Urvillea: from J. E. C. D’Urville, but the preposition preceding the name is omitted.

Gardens Bulletin, S.
9. **Elodes**: a masculine noun from Greek adjective *helodes* (marshy).
 Elodea: a feminine noun from Greek adjective *helodes*.

10. **Peltophorus**: a masculine form from *peltophorus-a-um*.
 Peltophorum: a neuter form from *peltophorus-a-um*.

None of these are therefore merely orthographic variants of the same name like *Phoradendron* and *Phoradendrum*, *Anadendron* and *Anadendrum* and *Dysoxylum* and *Dysoxylum*, in which the second form is nothing but the first name with its termination latinized, and both retaining the same derivation and gender. Such names, though not mentioned in the examples as orthographic variants under Art. 70, are mentioned as examples of the two different spellings of the same name in Art. 71 (3) where *Rhododendron* and *Rhododendrum* are given as examples. Perhaps the phrase “and other epithets” in Art. 70 (4) was meant to cover these variants also. The Rochester Code, which retains the generic names even when they differ slightly unless this difference be due to “the spelling of the same word”, gives *Epidendron* and *Epidendrum*, *Astercarpus* and *Astrocarpus* as examples of orthographic variants, but quotes *Apios* and *Apium* as examples of good, non-homonymous generic names, presumably because of their different gender. The names *Anodendron* DC. (1844) (Apocynaceae) and *Anadendron* Schott (1857) (Araceae) are somewhat on a different footing, the prefixes being derived from two different Greek words, though both having almost the same meaning: *ano* (upwards) *ana* (up). These two names have always been considered as good non-homonymous generic names, though they are not mentioned as examples in the Rules.

In view of this it would avoid confusion if Art. 70 were amended so as to include both Art. 71 and the principles deduced above. At present those who consult Art. 70 overlook the fact that that rule is not complete without Art. 71. The pertinent clause affecting the generic names discussed here could be stated thus:

Art. 70 Note 4(a): Generic names of Greek origin differing merely by having Greek and Latin terminations respectively, but involving no change in gender or parts of speech are orthographic variants or homonymous names; where a change in terminations indicates a difference in gender or accidence, the generic names must be considered as different, non-homonymous names.

This modification would clarify the rule of generic homonyms and would call for a revision in the nomenclatural decisions given by the different experts in Kew Bull. (1935) 341–544 (see my aforementioned paper 1937). It would also show that *Glossopetalum* Schreber (1789) and *Glossopetalon* A. Gray (1853) are homonymous names, being the
same name used twice in different senses. Though the former is unusable, being a later synonym of *Goupia* Aubl. (1775), the conservation of the latter is undesirable because both homonymous names are of the same family Celastraceae and occur in neighbouring regions, Mexico and Guiana. These two reasons combined would have been sufficient to demand the rejection of one of the two names even if they were not homonyms, in order to avoid errors, confusion and ambiguity in any treatment of the plants. In view of this, *Forsellesia* E. L. Greene (1893) is the correct name for *Glossopetalon* A. Gray. This decision accords with the treatment given by ENSIGN (1942), but conflicts with that given by ST. JOHN (1942).

30. Proposed Amendments to the Rules of Nomenclature

[Where the letter A follows the number of an Article, the amendment refers to the text of that Article in the existing Rules. Where other letters are used, the amendments are additions to, or transpositions of, the Rules. Where a letter is followed by *bis*, the amendment or addition refers to the Article amended in my previous Proposals in Gard. Bull. Straits Settl. XI, 1939, pp. 1-30. The Discussions with numbers refer to the Discussion preceding the Amendments in the present publication].

ART. 1A: ADD: The precise system of nomenclature on which an international agreement has been secured shall be known as the LINNEAN SYSTEM OF BOTANICAL NOMENCLATURE, hereinafter referred to merely as the LINNEAN, BINARY or BINOMIAL SYSTEM. This system is generally biverbal for species.

[Various designations are in use to name species, but nowhere in the Rules has the system been named. This addition meets the deficiency].

ADD: NOTE 1: (a) A *binary* name denotes two concepts, the first generic and the second specific; under the Rules these two concepts must be associated with two separate descriptions, though under certain conditions these two descriptions may be combined into one (*descriptio generico-specifica*).

(b) A *binomial* is a combination of two epithets, each of which stands in place of a description. The terms *binomial* and *binominal* are interchangeable.

(c) A *biverbal* name consists of two words; sometimes each word may be formed of two words united with a hyphen.

Examples: The consistent employment of binary binomials for species began in Linnaeus, Species Plantarum (1753); only occasionally these binomials are not biverbals (the Rules have
ART. 2B'bis: REVISE: The rules are divisible into three main categories according as they pertain to (a) validity, (b) legitimacy, and (c) propriety of names.

(a) The validity rules determine when a name shall have a claim to recognition by botanists, and so they treat of: (i) the admissible order of the different categories of taxonomic groups; (ii) the formation of names to denote these different categories; (iii) the nature of the description or citation with which a name or its epithet is to be associated; and (iv) the nature of the publication wherein the descriptions and names are published. Names instated in violation of any one of these rules are invalid, having no status under the Rules (Art. 19A).

(b) The legitimacy rules decide the correct name for a given taxonomic group in given circumstances (Art. 16A), and so deal (i) with the priorability and impriorability of names and epithets (Arts. 52B-F), (ii) with the use of a name or epithet on transference of a taxonomic group from one nomenclatural position to another (Art. 53A bis), and (iii) with the claims of two or more priorable names or epithets for the same taxonomic group (Art. 56A bis.). Names in use contrary to any one of these rules are illegitimate.

(c) The propriety rules decide (i) the correct spelling of names and epithets, (ii) the correct gender of these names and epithets, and (iii) the correct manner of citing the names both of the author who first validated the names and epithets denoting the taxonomic groups, and of the author who first placed the epithets in their correct position. Nomenclatorial expressions offending any of these rules will be improper; these offences affect neither the validity nor the legitimacy of the names and epithets.

ARTS. 10-12

[Arts. 10-12 must be revised. Nomenclature does not deal with individual plants as individuals; they are dealt with as representative of taxonomic groups. In Art. 18 the lowest representative of a taxonomic group is the type specimen. For
reasons stated in Discussions 13–14 and 17 references to \textit{individuum}, wild plants, hybrids, etc. are eliminated from the Rules as amended below].

ART. 10A: REVISE: The classification under the Linnean system so far recognizes the following ranks or categories of taxonomic groups enumerated in their descending order: Regnum vegetabile, Divisio, Subdivisio, Classis, Subclassis, Ordo, Subordo, Familia, Subfamilia, Tribus, Subtribus, Genus, Subgenus, Sectio, Subsectio, Species, Subspecies, Varietas, Subvarietas, Forma and Subforma.

NOTE 1: If this list of categories is insufficient, it may be augmented by the intercalation of supplementary categories provided that this does not introduce confusion or error.

Examples: Series and Subseries are categories which may be intercalated between section and species.

NOTE 2: (a) These categories of groups shall be classified philosophically as follows: NECESSARY (essential to the binary binomial system) and ACCESSORY (non-essential to the system). The Necessary groups may again be divided into FUNDAMENTAL and NON-FUNDAMENTAL; and the Accessory into SUBDIVISIONARY and DISJUNCTIVE.

(b) The FUNDAMENTAL NECESSARY groups are the Genus and the Species; only on these two the entire binomial system has been built. The NON-FUNDAMENTAL NECESSARY groups are family, order, class and divisio; at one time these groups did not exist in the Linnean system, though now they are necessary to phylogenetic taxonomy of the Fundamental groups.

(c) The ACCESSORY groups, though not essential to the system, are useful. The SUBDIVISIONARY groups divide a superior group into \textit{two or more} parts in order to show the affinities of the inferior groups under the superior group; a Subdivisionary group itself is permitted to be again divided and subdivide into subordinate groups according to convenience (Note 1). Subdivisionary groups can never be less than two under their immediate superior group. Prior to 1930 Subspecies were both Subdivisionary and Necessary, but now they are only Subdivisionary groups (Art. 37A bis Note 5).

(d) DISJUNCTIVE groups, which include varieties and subvarieties, represent minor deviations from

\textit{Gardens Bulletin, S.}
the standard established by the type specimen, varieties being minor deviations from the species sensu stricto, and subvarieties from varieties sensu stricto.

Forms and Subforms (which are distinguished on characters either permanent and hereditary, or transient, or acquired under special conditions), may be distinguished as forma and subforma biologica, specialis, juvenilis, adulta, cultigent, hybrida, apomicta, choronomica, etc. These are not taxonomic groups in the proper sense of the word, and their names being admitted as special subjects to the nomenclatural rules, shall not interfere with the priority or homonymy of the names of superior groups.

Rec: I and II are to be retained.

ARTS. 11–13: DELETE. Incorporated in Art. 10A and in Art. 2B bis.

ART. 14: DELETE. See Discussion 14, and also remarks on Arts. 10–12 above.

ART. 18A bis: DELETE the last sentence of the first para. (See Discussion 18).

TRANSFER the second para. with the examples to Art. 50B; it forms a special rule.

REVISE the first sentence of the NOTE as follows: “The nomenclatural type does not necessarily represent a group which is genetically the most simple, phylogenetically the most ancient, ecologically the most common, taxonomically most polymorphic, or physiologically the most perfect.” (See Discussions 19–21 & 25 and Art. 20A).

Rec: IV, V and VI: TRANSFER to Art. 50B as Rec. XXXIIB, XXXIIC & XXXIID.

Rec: VIIA: OMIT the word (“type”) (Discussion 17).

ART. 19A bis: ADD: “Note 1. The generic and/or specific names from works wherein genera and species have been treated in an unorthodox terminology on philosophic grounds but have nevertheless been given the correct forms of botanical names, shall be admitted as valid under the Rules, provided they were so admitted by contemporary botanists, or in the subsequent editions of Linnaeus Sp. Plantarum. The same principle shall be applied to the names of other taxonomic groups.”

Examples: (1) NECKER’s philosophical ideas on classification are rejected because he called the Linnean genera and species as species and proles respectively; but NECKER’s names for the Linnean taxonomic groups (genera) were correctly formed and admitted as valid by contemporary

Vol. XII. (1949).
botanists. These generic names shall therefore be admitted as valid under these Rules. The same principle applies to ADANSON's genera.

(2) FRIES's sectional or subgeneric names are in the correct form and were admitted as valid by contemporaries, though FRIES had called his subgeneric subdivisions "tribus". Hence they shall be accepted as valid under the Rules provided they satisfy other provisions for validity.

ART. 20A bis: Revise the last sentence after the clause (h) as follows: Note 1: The generic and specific names in works adopted as the starting points of nomenclature for the different groups of plants shall be treated as valid, even when they are unaccompanied by any description, an exception being made only of those names that are not correctly formed. Reference in such works to generic and specific descriptions published previously under the same name or another are invalid. For the purpose of typification, however, it is allowed to associate the Linnean genera in Species Plantarum (1753) and (1762-63) with their first subsequent descriptions in Linnaeus's Genera Plantarum (1754) and (1764), provided this does not disturb an already accepted typification based on any one of the specific components in 1753 and 1762-63 as the case may be. [Discussions 19-21 and 25].

ART. 25A bis: READ "admissible" for "valid" in the sentence: "But no generic name is valid unless:"

ART. 27A bis: READ "admissible" for "valid" in the sentence: "But no specific epithet is valid unless:"

ART. 28A bis: OMIT the words "of wild plants" in the first line of the second paragraph (Discussions 13 and 14). REVISE the last two sentences in second paragraph thus: "The use of a binomial nomenclature for subordinate groups of a species is not admissible, nor is it permissible to reduce more complicated names to trinomials except by removing subspecific epithets, and the conventional epithets used to denote a group sensu stricto. In the case of the names of forma and subforma, the epithets denoting sub-species may not be omitted.

DELETE the examples of Saxifraga Aizoon subforma surculosa as it is misleading. [Discussions 4, 5, 7, 10 and 11].

ADD: "NOTE 1: Binomials published before 1905 as varietal names shall have a valid status only as ternary names obtained by linking the varietal (second) epithet to the

Gardens Bulletin, S.
specific name under which the variety is established; the varietal binomials themselves, being invalid, are no obstacles to the priorability of their specific homonyms.

Examples: *Petroselinum sativum* Hoffm. var. *P. crispum* (Mill.) Nym., Conspl. Fl. Eur. (1879) 309 shall be considered as having been published as *P. sativum* var. *crispum* (Mill.) Nym. GANDOGER's varietal binomials must be considered as having been published as ternary varietal names. As binomials they shall have no standing under the Rules.

[The rejection of varietal names published under the old system does not contribute to the clarity of the subject. No confusion would result if priority were allowed to these varietal epithets within their superior group. Discussions 7-9, 11 and 13].

ART. 28B bis: REVISE the first sentence: "No varietal or subvarietal epithet having a valid status shall denote the species sensu stricto (i.e. the taxonomic form represented by the type specimen)."

READ: "NOTE 1" for "Note" and at the end of the Note

ADD: (see Rec. XXXV).

ADD: "NOTE 2: Two subordinate groups of the same species may not bear the same epithet in the same position. No subdivisionary or disjunctive group may bear the epithet of its immediately superior group, unless it includes the type of its immediately superior group. This rule also applies even when the epithets are preceded by such conventional prefixes as *Eu*.

Examples: TRANSFER here the examples under Art. 30 but amend the wording of the second example as follows:

"The following is incorrect: *Erysimum hieraciifolium* subsp. *strictum var. longisiliquum* and *E. hieraciifolium* subsp. *pannonicum var. longisiliquum*; the subspecific epithets being omissible, the varietal names are homonymous (see Art. 37Abis-5).

ADD: The expression *Andropogon Sorghum* subsp. *Sorghum* or *A. Sorghum* var. *Sorghum* is permissible (as a practical device) to denote only the type form of *A. Sorghum*. [Discussions 5-7, 9 and 11].

ART. 29: DELETE [This is self-evident because no homonymy is created].

REC. XIXB: Botanists are advised to follow the horticultural rules when dealing with cultural and hybrid forms which cannot be segregated taxonomically.

ARTS. 31-35: TRANSFER to Appendix VII. [Discussions 13 and 14].

SECTION 5A: REVISE: "Conditions of Valid Publication of Literature."

Vol. XII. (1949).
ART. 36A bis: Subject to Art. 20A bis, literature shall be valid only if it is printed or indelibly autographed and made available to the botanical public by sale, exchange, or distribution.

NOTE 1: From 1950 no publication shall be valid unless one hundred (100) copies at least are made available to the botanical public by sale, exchange, and/or distribution.

NOTE 2: Publication by issue of separates is not valid unless their distribution satisfies the general conditions for valid publication (see Note 1).

NOTE 3: From 1950 no systematic papers issued in non-botanical works or periodicals shall be valid unless they are also available to the botanical public in the form of separates.

NOTE 4: From 1950 seed-lists, indexes, herbarium labels, nomenclators, garden catalogues, floras for schools and colleges, plant introduction lists, and journals and books dealing with economic botany, shall be deemed as non-botanical works or periodicals for the purpose of this rule.

NOTE 5: The botanical public means institutions and botanists interested in systematic botany.

[The use of different terminology in different Articles to mean the same thing is often confusing. The present revision conforms with the terminology in Arts. 20a and 37a. See also remarks under Art. 36A in 1939 and Discussion 27].

RECOMMENDATION XXB: Botanists are advised to publish new nomenclatural entities in botanical monographs or periodicals, and are further recommended to indicate by means of special signs and types all new nomenclatural entities in the index or in an abstract accompanying the paper.

SECTION 6A: DELETE: "and dates" from the title of this Section.

[Rules concerning dates are put together with priorability in Section 9].

ART. 37A bis: AMEND (b): "by reference to a previously published valid description of a co-ordinate group (Note 4).

NOTE 2 bis: REVISE: The indication of the type locality, the peculiar habitat, or parentage or ancestry of a taxonomic group shall not be sufficient to establish a name under this rule. If descriptive characters are given, the type locality or the habit indicated shall become a part of the description and so shall form an

Gardens Bulletin, S.
important element in determining the identity of the taxonomic group. However, economic uses, vernacular names, parentage or phylogeny (individually or together) shall not become a part of the description of the new entity, even when this entity be of cultural or hybrid origin.

[Characters mentioned in the last category are not observed in the field. Often information given by guides is erroneous, as also speculation regarding parentage, phylogeny or ancestry].

NOTE 4 (b) bis: REVISE: "For the purpose of this rule, the members in each of the following groups shall be considered as being co-ordinate:

(i) Divisio and its subdivisions; (ii) Class and its subdivisions; (iii) Order and its subdivisions; (iv) Family and its subdivisions; (v) Genus and its subdivisions; (vi) Species and Subspecies; (vii) Variety and subvarieties within the same species and (viii) Formæ and Subformæ within their immediate superior group.

ART. 37A bis: NOTE 4 (c) bis: REVISE: In the case of a new monotypic genus, reference shall be allowed to the generic description in validating the name of its species, it being also permitted to give the description of the genus under the binomial of the species (descriptio generico-specifica).

ADD: NOTE 4 (d): In validating the name of a variety, subvariety, forma or subforma, reference shall be allowed to the description of any species or subspecies, but the converse shall not be allowed. Reference to the description of a variety and other subordinate groups shall not be allowed to validate a subordinate group of equal or lower rank outside the species, except when this species or its subspecies is the isonym or the basynym of the one under which the varietal or infra-varietal epithets are to be instated or were instated.

[Disjunctive groups being subordinate deviations from the standard receiving a superior name, are not easily fitted in as similar deviations of another standard unless defined again. Furthermore, varietal and specific differences are not co-ordinate.—See Discussions 4, 5, 8, 9 and 10].

Example: (1) Glossopetalum pungens Brandg. var. glabra (Ensign) H. St. John in Proc. Biol. Soc. Wash. LV (1942) is valid because the basynym of the variety was instated under Forsellesia pungens (Brandg.) Heller which is an isonym of G. pungens Brandg., the basynym of the variety being F. pungens var. glabra Ensign in Amer. Midl. Nat. XXVII (1942) 503.

Vol. XII. (1949).
(2) *Hemigramma Zollingeri* var. *major* Christ in Philipp. Journ. Sc. II (1907) 170 shall not be considered as the isonym of *Hemionitis gymnopteroides* forma *major* Copel., though the latter was considered as the basynym. The protologue of the variety therefore is the description and the syntype cited by CHRIST. See also examples under Notes 6 and 8 under Art. 51A.

ART. 37A bis: NOTE 4 (e): Reference to a description a defect of which rendered its name invalid shall not be able to validate the same or another name; for such a name to be valid a new description must be given.

Example 1: The names, *Neurotecoma* Schum. and *Spirotecoma* Baill., were invalid when published, the former because it was provisional and the latter because it was undescribed. DALLA TORRE et HARMS (1905) considered both these names as valid and listed the former in the synonymy of the latter which was earlier; this listing shall not be taken as the valid publication of *Spirotecoma* by reference to *Neurotecoma*, since the description of the latter was so defective as to render it invalid. [For discussion of this case see Furtado Provisional Names, in Gard. Bull. Straits Settl. IX, 1937, pp. 230–232; Discussion 25].

Example 2: *Leopoldia* was proposed as a provisional name by HERBERT in Bot. Mag. (1820) t. 2113, p. 5 footnote, to be adopted should certain circumstances prove true. The name did not become valid when it was mentioned in a letter in Trans. Hort. Soc. London IV (1821) 181 indicating that the plants of the group required certain cultural conditions.

[It is also invalid under the existing rule 37A (3) = Art. 42 (2) which interdicts references to the description under the same name. See Discussion 25].

NOTE 4 (f): No reference to a misapplication or misinterpretation of a name shall validate a name, even when there is available under the misapplied name a lengthy description based in part at least on new specimens. [Discussion 18].

NOTE 5 (a): TRANSFER here Art. 40A and ADD: “However names of subspecies published before 1930 shall be a special case of alternative names where the isynonyms and the basynyms are of unequal rank; they shall be the names of subdivisions (= subspecies) of a species sensu amplissimo and at the same time specific names of the microspecific groups. [Discussion 7].

NOTE 5 (b): Where Note 5 (a) applies, the alternative specific binomial for the subspecies shall be obtained by omitting the intercalating epithet between the generic name and the subspecific epithet; and if published as a specific binomial, the alternative subspecific trinomial shall be obtained by joining the epithet denoting the subspecies to the binomial denoting the metrospecies.

Gardens Bulletin, S.
NOTE 5 (c): Where Note 5 (a) applies, the varieties and other subordinate groups published under a subspecies shall become ipso facto varieties and subvarieties under the alternative specific name.

NOTE 5 (d): Since in all cases the intercalating epithets denoting the subdivisionary groups may be omitted, the varieties and subvarieties instated under a subspecies shall also be varieties and subvarieties under the species sensu amplissimo. This does not apply to formas and subformae which remain under the special group in which they are instated, the epithet var. typica or its equivalent being omissible.

NOTE 6: TRANSFER here Art. 40B.

NOTE 7: TRANSFER here Art. 41A.

ART. 45A: DELETE: it is transferred to Art. 52C in Section 9.

ART. 49A: REVISE: “When a name or epithet of a taxonomic group is retained after transferring it to a new position or rank, the name of the original author must be cited in parenthesis, followed by the name of the author who effected the transference, provided such a transference is allowed (see Art. 37A bis). If the transfer is not allowed, the instatement of the name or epithet in the new position or rank shall be invalid unless accompanied by a new description; in the latter case, the author who supplied the new description shall be cited.

[Reasons have already been adduced for limiting the references permissible in Art. 37A bis. Hence the amendment is needed here also. In addition, some verbal alterations were needed since “or a group of lower rank” at the beginning of Art. 49 could have been interpreted to render a part of the second sentence unnecessary or superfluous. The amendment also takes into consideration that the priorability is limited in the case of names of subdivisionary and disjunctive classes. See Discussions 6, 7, 8, 9 and 13-14].

SECTION 8A: ADD “Typification and” before the existing title.

ART. 50B bis: REVISE: “The type of the name of an Order or Suborder is a Family, that of the name of a Family, Tribe or Subtribe is a Genus, and that of the name of a Genus, a Species, or a group of lower rank, is usually a specimen or preparation. Where a new species includes the type-specimen of a simultaneously published genus, the type of the genus, and the type of the species shall be identical; the name of the species shall

Vol. XII. (1949).
then be retained to the generic type. Where the name of the species that includes the type of a new genus is an isonym of a previous name, the type of the new genus and the type of the isonym may not be identical; and so the genus may be so split as not to retain the specific isonym under it. Where permanent preservation of a specimen or preparation is impossible, the application of the name of a genus and other subordinate groups is determined by means of an original description or figure.

NOTE 1: No name may be used for a supra-generic group if it is taken from the name of a genus not retained under the group even as a synonym.

[This combines the second part of Art. 18, and Art. 66. Other changes were required because in many cases the so-called “type” species is not the type of the genus. cf. also Discussions 17 and 18].

Examples: TRANSFER here the example under Art. 18, but DELETE “and description” in the third line. TRANSFER here also the examples from Art. 66. [Discussions 19–21, and Art. 20A].

REC. XXXIIB: TRANSFER here REC. IV after DELETING “the subdivision which is” in the first sentence and after ADDING “or type-specimen” after “type-species” and SUBSTITUTING the word “type” for “type-variety or” in the second line.

REC. XXXIIC: TRANSFER here REC. V after SUBSTITUTING “When subdividing or splitting a genus” for “When revising a genus”, and ADDING “or specimen” after “species”.

[The word “revise” is used in a different sense in taxonomy, and revisers do not usually have opportunities to indicate lectotypes. Except in splitting or subdividing a group, revisers should not attempt to select lectotypes for fear of misdirecting future investigations. Discussions 17–21].

REC. XXXIID: TRANSFER here Rec. VI [Discussion 3].

ART. 51A: REVISE: “When an author has included under one taxonomic group two or more different elements (a mixtum compositum) and no holotype has been indicated, the first subsequent author who recognises the mixed composition of the group and selects a lectotype on adequate botanical reasons (Art. 22B and Note 1 below), or transfers the discordant elements to another taxonomic group, shall be followed, provided the name is retained to one of the original elements (see Art. 20A bis Note 1 and Art. 50B bis). If the name has not been retained to any of the original

Gardens Bulletin, S.
syntypes, it must be re-established to one of them. Where the holotype has been indicated even indirectly, the name must be retained to it except in cases indicated in the Notes below.

ART. 51A: NOTE 1: If two or more interpretations are possible, and if no syntypes are available, or when available are inadequate for the correct interpretation of the taxonomic group (a negative mixtum compositum), the neotype shall be so selected as to defend the earliest interpretation that agrees with the general plant-geographical and descriptive considerations and keeps the major group in the position assigned by the author (see Art. 22B).

Example: TRANSFER here examples from Arts. 51 and 52, and ADD:

Rhus filicina DC (1825) was based on two unpublished drawings (Ic. 189 and 217) and on two manuscript species based on these drawings (_R. filicina_ and _R. Tetlaziam_), both of which were regarded by DE CANDOLLE as conspecific. The manuscript species and the drawings were all by SESSE and MOCINO. About 50 years later, Ic. no. 189 was printed and published as being the type of _R. filicina_. This drawing is not well made and appears to be of a plant with bi- and tri-pinnate leaves. On this character the species has been regarded as conspecific with _Amyris bipinnata_ Sesse et Mocino, Ic. 197 ex DC. (1825) (the basinyom of _Bursera bipinnata_ (DC.) Engl., 1881), the implication being that DE CANDOLLE had made a mistake in describing the leaves. Others, however, disagree with this reduction and suppose that the leaf characters may have been badly drawn by DE CANDOLLE's artist, who had to copy hurriedly from SESSE and MOCINO's original drawings. These maintain that the clear description of the leaves and of the fruits admit no doubt as to its identity as a species of _Rhus_ as understood by DE CANDOLLE, and not _Bursera bipinnata_. (For controversy cf. Barkley in Ann. Missouri Bot. Gard. XXIV, 1937, pp. 1–10 et 3 pl; Barkley and Reed in Amer. Midl. Nat. XXI, 1939, pp. 368–377; Bullock in Kew Bull. 1937, pp. 440–441 and 1939, pp. 337–339).

In Ic. 189 no fruit is represented, and flowers are too poor for any generic identification. The facts that DE CANDOLLE described the fruit of the species, mentioned the vernacular name _Tetlaziam_, and stated that the species has simple imparipinnate leaves with pinnatifid sessile leaflets, lead one to typify _R. filicina_ D.C. (1825) on the second syntype, namely, _R. Tetlaziam_ Sesse et Mocino msc Ic. 217 (ined); for this syntype agrees well with all the characters mentioned by DE CANDOLLE, and it is also the one that has a fruit. Hence this syntype must be the lectotype of _R. filicina_ (Barkley has indicated a neotype cf. example 3 under Note 3 below).

[N.B. Those who typify the species on Ic. 189, alleging that the species was based "primarily" on Ic. 189, and not Ic. 217, overlook the fact that _R. filicina_ as published in 1825 was not _R. filicina_ Sesse et Mocino _in vel apud DC_. , but _R. filicina_ Sesse et Mocino _ex DC_. , the latter expression being equivalent to _R. filicina_ DC. Hence in typifying the species,
DE CANDOLLE'S syntypes, and not SESSE and MOCINO's holotype, should be considered. In 1874 only Ic. 189 was published, apparently because it was the type of the manuscript name, but unfortunately it is the syntype that has to be excluded from the mixtum compositum. This is a good instance of a misdirection of studies by publishing in 1874 only one drawing (instead of two) as the type of \textit{R. filicina}, and justifies my protest "against unnecessary alterations being made in the status of the syntypes even when the changes made are by the author of the species himself." (Gard. Bull. Straits Settl. IX, 1937, pp. 296-299)].

ART. 51A: NOTE 2: Notes left by the author on herbarium sheets shall not be used to discredit a typification previously made. Such notes, however, may be employed to supplement the published data and in selecting a lectotype if none has been previously indicated (either directly or indirectly). This lectotype may be chosen only when the current interpretation is not clear and does not accord with the general plant-geographical and descriptive considerations. [cf. Discussions 20-21].

NOTE 3: If a new genus is based on new specimens but an old species has been indicated as the type, and if it is found that the indicated type species is generically or specifically different from the new type specimens studied, the new genus shall then be typified on the new specimens on which the generic description was based [Discussion 17].

Example 1: The genus \textit{Binghamia} Britt. et Rose in Cactaceae II (1920) 167 was created to receive two old species, \textit{Cephalocereus melanostele} Vaupel (1913) and \textit{Cereus acranthus} Vaupel (1913). The two isynoms instated under the new genus were \textit{B. melanostele} and \textit{B. acrantha}, the former being indicated as the type species of the new genus. But, as pointed out by BULLOCK in Kew Bull. (1938) 454-458, there is no evidence that the authors actually saw the type of the species indicated as the type of the genus; and it is evident that the genus was based on newer material which, because of the similarity of habit and also because of its occurrence in the type-locality, was mistaken for \textit{C. melanostele} Vaupel. The latter, being a species of \textit{Espostoa} Britt. et Rose in Cactaceae II (1920) 60, has yielded the new isonym \textit{E. melanostele} (Vaupel) Bullock (1938). But, despite this transference of the indicated type species of \textit{Binghamia}, the latter genus does not become a synonym of \textit{Espostoa}; for \textit{Binghamia} is to be typified on the actual material on which the generic description was based, though mistaken for \textit{C. melanostele}. This material has been shown to be conspecific with \textit{Cereus} (Sect. \textit{Binghamia}) \textit{pseudomelanostele} Wedermann et Blackenberg in Neue Kakteen (1931) 74-75 (quoted by Bullock), and so the new combination has been rightly instated by BULLOCK as \textit{Binghamia pseudomelanostele} (Wederm. et Blackeb.) Bullock (1938). The type specimens of this species and those of the genus, though conspecific, are not identical.

\textit{Gardens Bulletin, S.}
Example 2: In instating *Goniophlebium* Presl (1836), an original generic description was given, and two out of the five species were figured. These two species (the only ones seen by Presl) were from America. PRESL also cited under the genus, *Polypodium* sect. *Goniophlebium* Bl. (1830); but all three of *BLUME*’s species were cited with some doubt, and with the following explanatory note: “Species *Blumeanae* non vidi et solumnmodo ex auctoritate clar. *Blume* hic retulit.” The fact that PRESL referred all the syntypes of *BLUME*’s section doubtfully to his genus is important because no genus can be typified on the species or specimens which have been referred doubtfully to it. PRESL was free to use any name for his genus, and the fact that he typified the genus on the specimens studied by him is an important point to bear in mind. Had he also included the specimens and the species of *BLUME* without expressing any doubt, the genus would have had to be typified as in the case of Example 1. But, as it is, the case is quite clear: the genus must be typified on the American syntypes studied and described by PRESL.

[In Genera Filicum (1947 p. 181) COPELAND writes that PRESL could not take the name from *BLUME* without also taking “whatever type of *BLUME* properly went with the name.” Yet in discussing *Anapausia*, COPELAND (op. cit. p. 132) writes: “In general, when the status of a group is changed, as from a section to a genus, its type goes with it. But in this particular case, in publishing *Anapausia* as a genus, PRESL cited “*Gymnopteris* §2 *Anapausia* Presl (excl. speciebus)”. So COPELAND does not accept the type of the Section as the type of the genus *Anapausia*. What is allowed in one case should also be allowed in the other].

Example 3: In establishing the monotypic genus *Actinocheita*, BARKLEY (Ann. Miss. Bot. Gard. XXIV, 1937, pp. 1-10 et 3 pl.) supposed that the syntype Ic. 189 of *Rhus filicina* DC. (1825) was somewhat misdrawn by the artist, but, because of the description of the leaves and the fruit, typified the species on *Pringle* 1752 (a neotype). From this neotype BARKLEY drew the principal characters of the genus. Hence the genus must be typified on *Pringle* 4752, and the “type” species should include that specimen.

[BULLOCK in Kew Bull. (1937) 440-441 and (1939) 337-339 has advocated that the type of this genus should be *Rhus potentilifolia* Turcz with Galeotti 4006A as the type, and, therefore, he has made the new combination *A. potentilifolia* (Turcz.) Bullock. Against this BARKLEY (I.c.) and BARKLEY and REED (Am. Midl. Nat. XXI (1939) 368-377, quoted by Bullock) have argued that the genus should be typified on *Rhus filicina* DC. with Ic. 189 as the type, suggesting that, if this type is not retained, the genus should receive another name. Hence the type species is called *A. filicina* (DC.) Barkley. But in the example discussed under the foregoing Note 1, it has been shown that *R. filicina* DC. should be typified on Ic. 217, the manuscript type of *R. Tettlawzi* Sesse et Mocino msc. Thus typified *R. filicina* DC. becomes conspecific with *Pringle* 4752. The correct name for the species that includes the type of *Actinocheita* is, therefore, *A. filicina* (DC.) Barkley emend. Furtado].

Example 4: *Hemigramma* Christ in Philipp. Journ. Sc. II (1907) was established as a monotypic genus with *H. Zollingeri* (Kurz) Christ (*Heminitis Zollingeri* Kurz) as the species,
and with *H. Zollingeri* var. *major* (Copel.) Christ as a variety. CHRIST excluded from the genus *Leptochilus latifolius* (Meyen) Christ (*Gymnopteris taccefolia* Sm. and *G. latifolia* Meyen). Now it is maintained that *G. latifolia* is identical with *H. Zollingeri* and that therefore the type species of *Hemigramma* should be *H. latifolia* (Meyen) Copel. (1907) (*G. latifolia* Meyen), that is, precisely the species that was explicitly excluded from the genus.

Actually the genus was described from new specimens studied by CHRIST, namely: (1) from “Batavia, Java, ex Herb. Hort. Bot. Bogor., and from Celebes, leg. Sarasin” with which KURZ’s figure was compared, and (2) from the Philippines cited under the var. *major*. In typifying the genus all these specimens must be considered, and not only those cited under the variety, as has been suggested by COPELAND in Science LXIX (1939) 328. Under certain circumstances *H. latifolia* may be the legitimate (correct) name for the species that includes the lectotype of the genus, but the genus must not be typified on the type of this species (cf. also Copeland, Gen. Filicum, 1947, p. 131).

ART. 51A: NOTE 4: In Fungi Caeteri all the genera and the species instated validly for the first time in FRIES’s *Systema Mycologicum* (1821–32) shall be typified on the descriptions given, and the specimens and the figures cited or implied by FRIES, the discoverer of a mixtum compositum being free to choose any one of these as the lectotype. However, a genus or species validly instated for the first time by another author after the issue of the first part of *Systema* (1821), but taken up subsequently by FRIES in another part of his *Systema* shall be typified on the types and description given by the original author, disregarding the newer circumscriptions and types given by FRIES.

[This gives a definite guidance on a point where there is much confusion. In addition it safeguards the species and genera of PERSOON and other authors who published between the 1821–32 more accurate descriptions and figures than those given by FRIES. cf. also Discussions 19–21].

ART. 51A: NOTE 5: If in instating a new name there was cited an equivalent priorable synonym of which the new name may be taken as a new combination under Arts. 53A bis and 56A bis, then the new name shall be taken as the isonym of the cited synonym and typified accordingly, even though the instatement was accompanied by a new description and by an indication of a new holotype. If two or more synonyms have equal claim to be the basinyym and no clue has been given by the author to discriminate between the rival claims, then the earliest of the synonyms shall be taken as the basinyym. If the cited synonym was impriorable, the new name shall be typified (that is, when no holotype
has been indicated) on any of the syntypes; the lectotype thus chosen may or may not be the type of the cited synonym.

Example 1: In Example (d) under Art. 56A (1939), *Petunia minima* Reiche (1910) is a priorable isonym of *Nicotiana minima* Phil. (1864), non Molina (1782). Hence *Combera minima* Sandw. (1939) must be taken as a new combination of *P. minima*, Reiche (1910), though SANDWITH regarded the former as a new name and had indicated a new type.

Example 2: *Cratoxylon formosum* Dyer (Fl. Brit. Ind. I, 1874, p. 258) was instated by a new description accompanied by the citation of two synonyms: *Elodea formosa* Jack (1822) and *Tridesmis formosa* Korth. (1839). These synonyms are not typonymous, and DYER did not indicate which of these two should be taken as the basionym of his name. Hence *E. formosa*, being earlier of the two, must be taken as the basynym of *C. formosum* Dyer, and the latter must be typified accordingly.

Example 3: Under *Ixora affinis* Don var. *arguta* Craib comb. nov. (1934) no descriptions were given, but the two following synonyms were cited: *I. arguta* King (1904) and *I. nigricans* Wight et Arn. var. *arguta* Hk. (1880). Since no varietal description can validate a species, or a variety outside its own species, and since a specific description can validate a variety (Art. 37Abis-4d), it is obvious that CRAIB’s variety must be typified on the type of *I. arguta* King, and not on the variety cited in the synonyms. (See also the example in Note 8 below.

ART. 51A: NOTE 6: If a new combination has been based on a priorable synonym of equal rank against the priority rule (Art. 56A bis), this new combination shall still be typified on its basynym [Discussion 15–16].

Example 1: *Shorea costata* Presl., *Rostlinei II* (1825) 66 was published by citing *Pterigium costatum* Correa (1806) and *Dryobalanops aromatica* Gaertn. f. (1805). Though *D. aromatica* Gaertn. f. was older and priorable, and PRESLEM had violated the rule of priority, *S. costata* Presl. must be typified on *P. costatum* Correa. Under *Shorea*, *S. costata* (Correa) Presl. must be used whenever the synonyms are regarded as taxonomically different. [Symington states that the two synonyms are taxonomically different: Gard. Bull. Straits Settl. X (1939) 368–369 in Observ. sub *Shorea submontana*].

ART. 51A: NOTE 7: If a synonym that appears like a basynym is merely an expression to denote its misapplication, then the new name shall be typified on the new description and its syntypes; if no such new description was made available under the new name, the question of typification does not arise, since the new name is invalid (Art. 37A bis. Note 4–f).

Example 1: See the discussion of *Goniophlebium* Presl. in Note 3, Example 3.

Vol. XII. (1949).
Example 2: *Heleocharis capitata* R. Br. (1810) was based on a new description and citation of a misapplication of *Scirpus capitatus* L. *sensu* Willd., with a clear indication that the types of the latter species were excluded. Hence the species must be typified on the description and the syntypes given by R. BROWN, and not on the types of *Scirpus capitatus* L. [Much confusion has been caused by typifying *H. capitata* R. Br. on *S. capitatus* L. For fuller details see Furtado in Gard. Bull. Straits Settl. IX, 1937, pp. 293–294].

ART. 51A: NOTE 8: If a name is intended to be a new combination based on a synonym not admissible under Art. 37A bis, the name shall be typified on the new description and its syntypes; if no such new description was given under the name, the question of typification does not arise, since the name cannot be valid.

Example 1: *Ixora arguta* King in Journ. Asiat. Soc. Bengal LXXII (1904) 74 was instated by a description, accompanied by a citation, in the synonyms, of *L. nigricans* R. Br. var. *arguta* Hk. f. (1889). Since under Art. 37A bis-4(d), a varietal description cannot be cited to establish a species, *I. arguta* King must be typified on the types indicated by KING, and not by HOOKER.

[In Gard. Bull. Straits Settl. IX (1937) 294–296, I gave a different typification, since the Rules admit references to a varietal description in validating a species. Amendments have now been proposed to prohibit this procedure, as it causes serious complications in plant taxonomy and nomenclature. See Discussions 8, 13 and 14].

Example 2: *Hoya esculenta* (Rumphius) Tsiang comb. nov. in Sunyatsenia III (1936) 176 was instated by citing *Sussuela esculentum* Rumph. Herb. Amb. V (1747) 467 t/175 f. 2 (an invalid name with non-validable description—see Art. 20A), *Hoya diversifolia* Bl. (1826) and *H. orbiculata* Wight (1832), the last two being priorable synonyms. The epithet in the invalid synonym has been used in the mistaken belief that it had the right to priority; but since its description cannot validate *H. esculentum*, this new binomial must be regarded as invalid. (cf. Example in Note 9).

ART. 51A: NOTE 9: If a new name (nomen novum) has been instated by citation of a valid synonym, and by a new description, and no holotype has been indicated, all the syntypes of the description shall be included in the typification of the new name. If no new description was given, then the isonym shall be typified on the basynym.

Example 1: *Anodendron manubriatum* (Wall.) Merr. comb. nov. in Philipp. Journ. Sci. VII (1912) 333 was created by citing the following synonyms:

- *Echites manubriata* Wall. Cat. (1829) n. 1663 (a nomen nudum).
- *E. paniculata* Roxb. (1832) (a later homonym of *E. paniculata* Poir).
- *E. coriacea* Wall. Cat. n. 4464 (a misinterpretation of *E. coriacea* Bl).

Gardens Bulletin, S.
A. paniculata (Roxb.) DC. (1884) (a priorable name).

No new description was given. The epithet *manubriata* was adopted for the new name on the mistaken belief that *A. paniculata* DC. was impriorable and that the Wallichian combination supplied the earliest epithet "that is tenable, although originally a nomen nudum." Since MERRILL intended *A. manubriatum* to be a new name for *A. paniculata* (Roxb.) DC., which he considered mistakenly to be impriorable, MERRILL's new name should be valid with reference to the description of *A. paniculata*. (*E. manubriata* was clearly recognized as a nomen nudum unable to validate the new combination. WALLICH had intended it to be a new name for *E. paniculata* Roxb., but unfortunately the publication of the latter was delayed and rendered the former name invalid).

ART. 51A: NOTE 10: If a specific name has been instated as a "new combination" with the generic name of the basinym as the specific epithet in the combination, the new name, though unsatisfactory under the priority rule, shall be typified on the basinym, disregarding the new description and new types.

Examples: *Artocarpus polyphemia* Pers. (1807) was based on *Polyphemia Champeden* Lour. (1790) and a description; the former, which was a legitimate isonym under the old custom, must be typified on the type of the latter (basinym). (It should not be possible to typify this isonym differently so as to permit its being considered not synonymous with *Artocarpus Champeden*).

ART. 52: DELETE. Incorporated with Art. 51A.

SECTION 9A bis: REVISE "Dates, Prioriability and Legitimacy of Names".

ART. 52B: TRANSFER here Art. 61B Note 2; and ADD:

NOTE 1: All valid names of the necessary groups of the same rank must be included in priority considerations, subject to the Notes below and to Arts. 52D–F.

NOTE 2: Conserved names or nomina praecedenda take precedence over all other names for the groups for which they are conserved, even when they are later homonyms or later synonyms, provided the conservation is made explicitly for the purpose (Arts. 21B–D).

NOTE 3: When the starting point of nomenclature for a group of plants is a book issued in parts at different dates, and when, in the intervening periods, names have been validly published in another book, or periodical, these latter names, unless taken up in the starting point book, shall yield their precedence both in prioriability and homonymy to the names published in the book fixed as the starting point. [cf. also Art. 51A Note 4].

Vol. XII. (1949).
NOTE 4: Specific epithets instated under a valid but impairable genus are priorable in the same way as those established under a priorable genus. [Discussions 23 and 24].

NOTE 5: The priorability of the names of Fungi with pleomorphic life-cycle is guided by Art. 57 which prescribes that only the names given to the perfect state are to be admitted in priority considerations, the generic name including at least one specific name for a perfect form being also eligible for inclusion in priority considerations. The names of other states are only of temporary value, and cannot claim priority over the names of perfect groups.

NOTE 6: The priorability of the names of subdivisionary and disjunctive groups is restricted as follows:

(a) Priorability of names or epithets denoting varieties and infra-varietal groups shall be restricted within their immediately superior group. When however a specific or subspecific name has become the basinym of a new name for the group, names of the subordinate groups under the basinym shall have priority claim under the isonym also, and conversely the names of the subordinate groups under the isonym shall claim priority right under the basinym. [Discussions 4–10].

(b) The priorability of the epithets of groups of the subdivisionary class shall be restricted within the same necessary group and under the same name, and this also when the basis of the classification is the same. If the name of the necessary group is the basinym or isonym of another name, then the subdivisionary epithets will have a priority claim under both the basinym and isonym of the necessary group, provided the basis of the classification is the same.

Rec. XXXIIB: Whenever a genus or its subdivision is transferred as a subdivision to another genus, botanists are advised, when possible, to retain, for the subdivision, the generic or subdivisional epithet, provided no priorable epithet is already available for it in the new position. [This is the old Art. 53].

ART. 52C: TRANSFER here Art. 45A and insert at the end of the first sentence, the second line, before the full-stop, "or in some cases from its earliest valid transfer (Note 1)".

NOTE 1: The priorability of names and epithets of organisms transferred from the animal to the vegetable Gardens Bulletin, S.
kingdom, shall date from their earliest valid instatement in the vegetable kingdom. Mere citation of the names in the synonymy of botanical names shall not constitute a valid instatement under this rule.

[This is the natural consequence of Art. 36A bis; botanists should not be bound to refer to the works of zoologists, who are ruled by a different code of rules].

ART. 52D: TRANSFER here Art. 61A and Note 1, but DELETE Note 2 and "or its formal equivalent" in Art. 61A; and ADD:

"NOTE 2: Later and simultaneous homonyms discarded under this rule are impriorable."

[This Note 2 is Art. 61B. This amendment and those in Art. 61A (Art. 52D) are made in view of the proposed changes in Arts. 28A bis and in the limitation of priority in the names of non-necessary groups].

NOTE 3: TRANSFER here Art. 61B Note 1, after OMITTING "real (not formal)" from the first sentence.

ART. 52E: TRANSFER here Art. 62A, but DELETE "or legitimized".

ART. 52F: TRANSFER here Art. 63A, but DELETE the phrase "nor be legitimized", and substitute "not" for "neither".

ART. 53A bis: READ "adopted" for "legitimized" in the second paragraph, second line.

NOTE 2: TRANSFER here Art. 53B.

SECTION 10: DELETE the title. The Articles go with Section 9A bis.

ART. 56A bis: READ "adopt" and "adopted" for "legitimize" and "legitimized" respectively.

SECTION 11 and ART. 58: DELETE. [This confuses the rule of priority, which is applied to names of the same rank. This Article is also irrelevant. Art. 37A bis and 52B-C clarify the issue].

Rec. XXXVIA: READ "unless it becomes impriorable" for "unless it is rejected under Section 12". But DELETE Rec. XXXVI (3), as this confuses the typification. [Discussions 9, 13-14 and 25, and Art. 37A bis].

SECTION 12 and ARTS. 59-69: DELETE.

[Relevant matter has already been incorporated in Arts. 52B-F. These Articles are wrongly placed here, and much of the material is confusing. See Discussions 15 and 16].

Vol. XII. (1949).
ART. 70A: ADD to the first sentence in the second line before the full-stop “Or of a change made in the original spelling of the names and epithets in order to conform with the prescriptions and recommendations regarding gender, transcription, or termination”.

NOTE 4A: REVISE: (a) Generic names of Greek origin differing merely by Greek and Latin terminations respectively, but involving no change in gender or other grammatical accident of words are orthographic variants or homonyms; where change in terminations indicates a difference in gender or other accident, the generic names must be considered as different (not homonymous).

(b) Orthographic variants may also be formed by a slight difference in spelling adopted for the sake of correct Latin form, correct etymology, or euphony in transliterating or transcribing a foreign word in Latin (without the change of gender or case), or by a decision of the Congress (Art. 21B). Different generic names made by slightly altering the spelling of the same word of foreign origin must be submitted for the decision of the Congress if they are likely to be confused as homonyms or orthographic variants.

(c) Specific and other epithets differing slightly in form and having the same meaning, or differing only in Greek and Latin terminations are considered as orthographic variants or homonyms, even when these terminations indicate a difference in gender or case, or sometimes in others accident also; the proper noun in any inflection and the adjectives derived from it are however different epithets e.g. (Lysimachia) Hemsleyana and L. Hemsleyi.

(d) Changes made in the original spelling of specific and other epithets in order to conform with prescriptions and recommendations in regard to gender, transcription and termination do not constitute different epithets.

Examples: ADD (a) Different Generic Names: Anodendron and Anadendron; Boea and Bouea; Gyrinops and Gyrinopsis.

(b) Orthographic variants: Generic names: Bulbophyllum and Bulbophyllon; Anadendron and Anadendrum; Dysoxylon and Dysoxylum; Eleocharis and Heleocharis; Bambos and Bambusa; Houmiri and Humiria; Swertia and Sweertia; Sesban and Sesbania; Dictyosperma and Dictyospermum.

(c) Orthographic variants and homonyms: (1) Androseksia Reichb. apud Spach is a later homonym of Androseksia DC. and an orthographic variant of Andrzeiowskia Reichb.;

Gardens Bulletin, S.
(2) *Beureria* Spreng. is a later homonym of *Beureria* Ehret. and orthographic variant of *Bourreria* P. Br. and of *Beurseria* Spreng.; (3) *Schultzia* Spreng. a later homonym of *Schultzia* Rafin. and an orthographic variant of *Schultzia* Spreng.; (4) *Silvaea* Meissn. a later homonym of *Silvaea* Hook. et Arn. and an orthographic variant of *Silvia* Allem.; (5) *Wendtia* DC. an earlier homonym of *Wendtia* Meyen and an orthographic variant of *Wendia* Hoffm.; (6) *Dictyosperma* Wendl. et Dr. is a later homonym of *Dictyospermum* Wight and *Dyctisperma* Raf. and an orthographic variant of *Dictyospermum* Wendl. et Dr.

(d) Orthographic variants: epithets: integer-ra-grum; *Kunstleri*, *Kunstlerii* and *Kuenstleri*; sandwichensis-e and sandwichensis-e. [Discussions 28 and 29].

ART. 72B bis: SUBSTITUTE “subordinate groups” for “subdivisions”.

[This change is needed in order to conform with the restrictions made in the use of the term subdivision. Cf. Discussions 5-12].
The Malayan species of Salacca.

By C. X. Furtado, Botanic Gardens, Singapore.

This genus of palms has usually been known by the name Zalacca, but in fact the earliest valid publication of the generic name is spelled Salacca by Reinwardt. The spelling Zalacca (copied from the Herbarium Amboinense) was adopted soon afterwards by Blume and has since been current. A discussion on the matter is given below under S. edulis. The genus belongs to the class Lepidocaryeae, so-called because the fruit in this class of palms has its outer coat made of small scales. In its structure, Salacca may be considered to represent a more primitive stage in the evolution of Lepidocaryeae than the species of Calamus, Daemonorops and allied genera.

The Salaccas are all apparently stemless or short-stemmed palms, usually tufted, producing very long leaves, (in one species small), bearing spines on leaf-stalks, and setae or spinules on the margins and sometimes on the veins of the leaflets. Each clump is produced by successive branchings near the base. The buds which produce the branches may begin growth in the axils of living leaves, or in the axils of leaves which have fallen. In the latter case, the branches are, so far as observed, always vegetative. In the former case, the developing bud pierces through the base of the leaf-sheath; and the branch may bear only a tuft of leaves, or only flowers, or it may bear both flowers and leaves. A branch which bears both flowers and leaves (the latter always terminal) may continue to produce flowers even after the leaves have begun to develop.

Each branch grows horizontally or obliquely upwards for a certain distance (this distance depending on the species) before producing its terminal erect tuft of leaves; the part below the leaves is covered with sheaths. The form of the whole clump is determined by the mode of growth and length of these branches.

The way in which the spadices arise in Salacca by puncturing the back of the leaf-sheath at its very base is markedly different from their origin in the allied Malayan genera, and especially from the species of Calamus and Daemonorops which have their spadices connate with the axillary internode and with the leaf-sheath above the

Gardens Bulletin, S.
internode, so that a spadix in these latter two genera appears to arise externally from the sheath of the leaf above the axillant leaf.

Though the leaves of Salacca are very spiny, no claws or spines of any kind are found in any parts of the Salacca inflorescence, except on the outermost spathes of *S. conferta*. The fruits are always scaly, and sometimes the scales are pungent; and all such fruit scales may themselves be regarded as a transformation of spines. The spadix bears cylindrical spikes either directly on the main axis, or on primary, secondary, or tertiary branches. In some species these spikes are distant, in others they are close together; in a few species the spadices are as much as one to two metres long, whereas in some the spadix may be as short as 20 cm. Each spadix-branch arises in the axil of a spathe, but subsequent development may be such as to make the branch or spike appear much above the axillant spathe. A female spadix is somewhat dissimilar from the corresponding male spadix, and, though it is often shorter than the latter, it bears usually larger spikes. All the primary spathes are more or less coriaceous, loose, tubular at first, later open on one side to a greater part of their length, and in some species quite lacerate in the limb. The secondary and other spathes are similar but smaller, tending to be less firm, or almost chartaceous; sometimes there may be more than one spathe on the stalk that bears the spike.

The spike, which arises in the axil of a spathe, is composed of many approximate bracts (corresponding to the spathels of Calamus) which are more or less united at their margins. Within these bracts there are bracteoles which form an epicalyx to each flower.

The *male flowers* arise in a pair in the axil of each spathe (bract), each flower having a bracteole as the epicalyx. The calyx is membranous, 3-parted; the corolla is longer than the calyx, having a tubular base, fleshy at the very bottom, and a 3-partite limb. There are six epipetalous stamens; and the ovary is abortive.

The *female flowers* are either solitary in the axil of a bract (in *Leio-Salacca*), or each is accompanied by a neuter flower (*Eu-Salacca* and *Eleiodoxa*); but each female flower has an epicalyx formed of two bracteoles, while the epicalyx of the neuter flower, like that of the male flower, consists of only one bracteole. The calyx is membranous, 3-parted; the corolla nearly as long as, or slightly longer than, the calyx, valvately 3-partite; the staminodes six; the ovary 3-celled, strigose (*Eu-Salacca*), or not (*Leio-Salacca* and *Eleiodoxa*). The fruit is 1–3-celled, having either smooth adpressed scales (*Leio-Salacca* and *Eleiodoxa*), or specially

elongated sharp, upturned tips to the scales (Eu-Salacca). The seed is surrounded with a soft, somewhat acid edible integument; the endosperm is homogeneous with a deep cavity at its apex; the embryo is situated at the base, exactly opposite the apical cavity, or slightly above the base on one side.

In their general characters, the species of Salacca may be grouped into three classes as shewn in the previous paragraph; but the differences between these classes are such that systematists in general are not yet agreed whether the classes should receive the rank of sections, subgenera or genera; but considering that the species involved are not many, that the vegetative characters do not vary very much, and that the distinctions in the important reproductive parts are not clear-cut, I have found it expedient to keep these classes only as sections, and to adopt for them BECCARI’s names, proposed originally both as sectional and as alternative subgeneric names.

Distribution.

The genus Salacca is distributed throughout the Indo-Malaysian region from Assam, Burma, Siam, Indo-China, Malaya, Sumatra, Borneo, Java and the Philippines. A form with much edible flesh has been supposed to be native in Amboina, but RUMPHIUS is quite positive that this was introduced into Amboina from Bali and Banda Islands, and there is no other evidence of the genus occurring wild from Celebes eastwards.

Nomenclature

Since Zalacca and Salacca are not two homonyms but different spellings of the same name (orthographic variants), combinations instated under the erroneously spelt generic name should be considered as having been instated also under the correctly spelt generic one; and on this view I have considered all the specific names originally published under Zalacca as validly published also under Salacca. To consider all those binomials which have been corrected here for the first time as to the spelling of the generic name as new combinations formed by me would be misleading.

[MILNE-REDHEAD (Kew Bull., 1948, p. 170) has considered Fernandezia Ferdinandii (Welw.) Schum. (1903) and Fernandoa Ferdinandii (Welw.) Milne-Redhead (1948) as two different combinations, when Fernandezia and Fernandoa are two different spellings of the same name; but such a procedure, in my opinion, is incorrect. Were Fernandoa a different name from Fernandezia, then it would

Gardens Bulletin, S.
not be possible to replace the earlier name *Fernandia* by a later name, *Fernandoa*, unless it were formally proposed for conservation; the replacement has been justified on the plea that the two names were orthographic variants and that the earlier was a wrong spelling of the later].

In the treatment given below, therefore, I have retained the name of the original author who made the binomial combination under the wrongly spelt generic name, though I have corrected the generic spelling. However, I have inserted *Z* or *Zalacca* in brackets after *Salacca* in order to show that the original combination was made under *Zalacca*

Apart from this difference in spelling, there has been a good deal of confusion in the use of specific names established early in the genus. This is due mainly to the desire of later botanists to identify the “lost plants” described by 17th century writers. Hence, when establishing the genus or its species, these botanists sometimes quoted the pre-1753 writers who had described or depicted plants believed to belong to the species the later botanists were studying. But in fact the genus and its species were established by these later botanists, not by 17th century authors, so that in interpreting the genus or species, more importance should be attached to the specimens studied by the authors than to the doubtful figures quoted by them. Thus *S. edulis* was established on definite specimens studied by REINWARDT, on which the generic description was also based. This type material, a drawing of which was later made available to MARTIUS, should not be over-looked merely because REINWARDT had referred also to the previous writers who had described Salacca fruits imported to Europe preserved in brine, and to RUMPHIUS who, in addition to making a reference to these early descriptions, had figured and described some new plants under the name Zalacca (a latinised name used by BURMANN for the Rumphian Zalack). REINWARDT’s material was from Java, where he had studied these plants in the living state; it is specifically identical with what MARTIUS later named *S. Blumeana*, apparently because the older specific epithet was misleading, for the fruits of all Salaccas known to him were edible. Typified on REINWARDT’s specimen, *S. edulis* Reinw. becomes the correct name for *S. Blumeana* Mart. The Amboinese material depicted by RUMPHIUS is probably identical with *S. sumatrana*, a species which appears to be widespread in cultivation and to have many forms. The fruits, preserved in brine, that arrived in the 17th century in Europe may have been either *S. sumatrana*

Vol. XII. (1949).
or *S. edulis*, the latter having also more than one form in cultivation. Evidence is available to show that *S. Rumphii* is a binomial actually published by WALLICH with a plate for what has hitherto been known as *S. Wallichiana* Mart. Later in the text of the same book, WALLICH changed the name to *S. edulis*, apparently on the authority of MARTIUS, who at the time probably thought that all Salacca represented one species only. But the earlier name is valid and so has the priority claim; this view was also defended by BLUME (*Rumphia* II, 1843, p. 158, sub. Observ.).

Summary

Of the 13 species of the genus, the following are wild in the Malay Peninsula: *S. affinis*, *S. conferta*, *S. flabellata*, *S. glabrescens*, *S. Rumphii* and *S. Scortechinii*. RIDLEY does not include the last mentioned species in his Flora (1925), nor does he give any reason for this omission. Beccari’s plate of the type of *S. Scortechinii* looks like a mixture consisting of a young leaf of *S. affinis* and a spadix of *S. conferta*, but I do not feel justified in making this reduction without being able to compare the original material with recent collections.

Salacca conferta is split into two species by BURRET (1942), under the genus *Eleiodoxa*, as *E. conferta* and *E. orthoschista*, the latter based on material collected in Singapore. Though we have very good material from Singapore, we have very little from Malacca, the type locality of *S. conferta*; on the evidence at present available, I am not able to separate the two species.

S. flabellata is the only new species described here; it is reported to be very common in two places in Kemaman (at Sungei Nipah and at Bukit Kajang). It is the smallest species in the genus and is easily recognized by its undivided leaves, a character not found in any other *Salacca* except in seedling stages. The species is known from male specimens only.

In the key to the species, the non-Malayan species *S. sumatrana*, *S. vermicularis* and *S. edulis*, are given in order to make clear the identity of *S. edulis*, which is found occasionally cultivated or as an escape in Malaya, and is probably the species commonly cultivated in Java for the export of its fruits. I have also given the synonyms of *S. edulis*, so that the use of the name is clarified. *S. borneensis* has been reduced to a variety of *S. affinis*, but the variety has not been recorded in Malaya.

Gardens Bulletin, S.
KEY TO THE SPECIES

Leaves not divided into separate leaflets, whitish beneath (Eu-SALACCA?)

1. S. flabellata Furtado.

Leaves pinnate, whitish beneath or not

Fruit clothed with scales having pungent tips (Eu-SALACCA)

Leaflets whitish beneath

Leaflets equidistant, at least in the upper half of the leaf

2. S. sumatrana Becc.

Leaflets inequidistant throughout, often in groups

Male spikes long, erect, spreading, entirely exsert from the spathes

3. S. vermicularis Becc.

Male spikes short, congested, nearly enclosed in the spathes

4. S. edulis Reinw.

Leaflets green on both surfaces, not whitish beneath

Leaflets distinctly sigmoid at base with smooth costae. Male spikes glabrous outside. Fruit globose or pyriform, suddenly beaked.

5. S. glabrescens Griff.

Leaflets oblanceolate, sometimes spinulose on midcosta above. Male spikes tomentose outside. Fruit obovate-pyriform, conically beaked at apex

6. S. Rumphii Wall.

Fruit smooth, not covered with pungent scales

Female flowers solitary (LEIO-SALACCA)

Fruit with scales arranged with 21–26 vertical series

7. S. affinis Griff.

Fruit with scales in 18–19 vertical series

8. S. affinis var. borneenis (Becc.) Furtado

Female flowers accompanied by a neuter flower (ELEIODOXA)

Leaflets straight

9. S. conferta Griff.

Leaflets sigmoid

10. S. Scortechinii Becc.

Vol. XII. (1949).
The Species

A. Section EU-SALACCA (Eu-Zalacca) Becc.

Female flowers each accompanied by a neuter flower; ovary strigose; fruit provided with scales with sharp, upturned tips; seeds 3.

BECCARI typified S. edulis on the belief that, being the first and only species published under the genus Salacca, it had to be typified entirely on the earliest reference given by RUMPHIUS and by REINWARDT. The Rumphian Zalacca seu Rottan Zalak (Herb. Amb. V, p. 113, t. 57, fig. 2) refers to plants found in Amboina, Bali and Java, though the plate is apparently of a plant cultivated in Amboina; but both the description and the figure are too poor for an accurate determination of the species. On BECCARI’s own showing the Rumphian plate should be identified with what he calls Z. edulis var. amboinensis which, I believe, is a variety of S. sumatrana Becc. The earliest reference cited by RUMPHIUS and also by REINWARDT is CLUSIUS’S Exot. Libr. II Cap. iv (1605) 266 (Baly insulae fructus aspero cortice) which is also cited by C. BAUHIN as Fructus squamosus pyriformis in Pin VI (1623) 511; CLUSIUS gives a drawing of a fruit that had reached Europe from Bali preserved in brine. This drawing is quite insufficient for a correct identification of the species.

On the other hand, REINWARDT, the author of the genus and the species, (S. edulis), was in Java and it is the Java plant that he had actually studied and named first Salakka edulis in Blume, Cat. Gew. Buitenz. (1823) 112 (cf. also p. 4 of this Catalogue for reference to REINWARDT’S manuscript work on Java plants), and then in the latinised form quoted above. I have not been able to consult REINWARDT’S actual protologue of the species and of the

Gardens Bulletin, S.
Fig. 1. S. edulis, ♂. (in Hort. Bot. Sing. culta).
A. Speciei habitus. B. Spica cum spatha. C. Flos masculus.
genus. But the fact that REINWARDT had studied Javanese material in establishing \textit{Salacca} and \textit{S. edulis} should not be overlooked, on the plea that the generic name had been used in pre-1753 books for a different species (a species not easy to be established from the available data). REINWARDT obviously established his species and the genus on the specimens actually studied by him (fruit figured by Martius in \textit{t. 159, fig. 3}), but consistent with contemporary ideas and to throw light on the previous history of the plants in European literature, he also referred to previous descriptions and drawings of plants which appeared to him identical with his specimens; but this did not mean that, in case these anciently described plants proved different specifically or generically, we should discard Reinwardt's original studies made on clear specimens and typify the species on what he himself could not study satisfactorily. Also under Art. 42 (2) of the Rules we are obliged to consider that REINWARDT established his new genus \textit{Salacca} with reference to his new description based on the living material, not with reference to its previous description given under the same name. This means therefore that we have to identify \textit{S. edulis} with REINWARDT's Javanese material, a drawing of which was published by MARTIUS under \textit{S. Blumeana}.

Thus typified, \textit{S. edulis} Reinw. becomes synonymous with \textit{S. Blumeana} Mart., and it was thus interpreted by MARTIUS (1838) and BLUME (1843?). The probable reason why MARTIUS replaced the specific epithet \textit{edulis} by \textit{Blumeana} is that there were more than one species having edible fruits and many of his contemporaries would employ the epithet wrongly to name any species having an edible fruit; besides, previous to the creation of the new name \textit{S. Blumeana}, WALLICH (1832) had adopted \textit{S. edulis} for \textit{S. Rumphii}. But such considerations are not valid now; and it appears that they were not valid among many contemporary botanists of MARTIUS himself, for BLUME (1843, p. 158 sub-Observatio) states that under "jus prioritatis" \textit{S. edulis} should be the correct name for what MARTIUS had called \textit{S. Blumeana}.

Fortunately this typification of \textit{S. edulis} does not leave the Amboinese material without a name, for I believe it is identical with \textit{S. sumatrana}, which includes three forms or varieties: one with all leaflets equidistant, the second with leaflets subequidistant or obscurely so towards the base, and the third with leaflets distinctly grouped in the basal portion. In all these varieties the leaflets at the leaf-apex seem to be free, not united as in \textit{S. edulis}. The shape of the fruit is not a good diagnostic character in \textit{Salacca}, as it is determined by

\textit{Gardens Bulletin, S.}
the amount of free space the fruits have for their development; if many of the fruits drop off when young or fail to develop, the remaining fruits have more space and then often have a rounded base, or a less cuneate base than fruits growing closely together.

From the data given of plantings in the Botanic Gardens, Buitenzorg, *S. sumatrana* is also cultivated (or wild?) in Java and Borneo, and probably we have to locate the original home of this species in this region extending as far as Sumatra. *S. vermicularis*, which is closely allied to *S. sumatrana* and to *S. edulis*, is found wild in Borneo, reaching the Kinabalu Mountains at an altitude of about 1000–1500 m.

2. *Salacca flabellata* Furtado sp. nov.

Ab omnibus hujus generis speciebus haec differt foliis parvissimis flabellatis apice bifidis, spadiciis flagelliformibus gracillimis, caule brevissimo cum vaginis ad 5 cm. in diam.

Caulis gracilis, brevissimus, in parte foliiferente circa 7 cm. altus, cum vaginis ad 5 cm. in diam., in altera parte repens, subterraneus, brevis, plures radices gerens. *Frondes* flabellatae, dimensione variabiles, hic majores tantum designatae; petiolus 1.5–2 m. longus, 5–10 mm. in diam., trigonus vel subteres, basi longe canaliculatus et alis semi-coriaceis mox marcescentibus deciduis vaginatus, aculeis 5–25 mm. longis rigidis saepe porrectis irregulariter sitis, apicem versus paucioribus, minoribus sejunctis apice et secus margines liberas setosis, rachidi 50–60 cm. longa, basi tantum armata vel non. *Spadices masculi* 1–2 m. longi, axi 3–4 mm. in diam., funiculati, gracillimi, indivisi, in axilla frondis solitarii, basi petioli perforata orientes, spiculas 1.5–3 cm. longas, in spathae axilla primariae solitarias, longe pedicellatas, pedicello quam internodus paulo breviores, spathas secundarias, fere chartaceas ferentes; spathis primariis quam internodi 5–10 cm. longi longioribus, coriaceis, apice mox fibrosis; floribus masculis clavatis, circa 4 mm. longis; corolla quam calyx fere duplo longiore.

Stem smallest in the genus, with sheaths 5 cm. through, hardly above ground. *Leaves* similar, of varying dimensions, the largest as follows: petiole 1.5–2 m. long, 5–10 mm. in diam., trigonal in its basal half, almost terete in the

Fig. 2. *S. flabellata, ♂*. (Holotypus: Corner 30,525).

upper; channelled and provided with deciduous, vaginal wings at base, armed irregularly with 5–25 mm. long rigid spines, which become fewer, smaller towards the apex (where they are dorsal only) and in the base of the leaf rachis; lamina flabellate, deeply bifid at apex, whitish beneath, obovate, 80–100 cm. long, 40–45 cm. wide at apex, gradually narrowed towards the base where it is obliquely cuneate; rachis 50–60 cm. long and armed or not at base; the lamina with a short free tip corresponding to each vein, setose along the margins and at apices. Male spadix emerging through a puncture in the dorsum of the petiole-base, whip-like, solitary, 1–2 m. long, 3–4 mm. in diam., with internodes 5–10 cm. long; primary spathes slightly longer than the internodes, tubular, soon split into a fibrous limb in the upper half; spike one in the axil of each spathe, 1.5–3 cm. long, 10–12 mm. through, provided with a pedicel slightly longer than the spadix-internode; secondary (empty) spathes on the pedicels, chartaceous; flowers male, clavate, 4 mm. long.

MALAYA: Kemaman, Sungei Nipah, on hillsides and in swamps by streams (Corner, 30,525, vern. nom. Salak Chabang).

Plants with much smaller leaves and spadices are also found in the same clump, which is formed of distant stems united together by whip-like branches or spadix-axes. However in the description given above measurements are those of the largest specimens seen in the collection.

The collector notes that this species is quite common also at Bukit Kajang, Kemaman, on the hillside near Ulu Ayam swamp. The spadices are reported to grow first upwards and then down or straight over the surface of the ground, sometimes burrowing under humus or becoming silted over in swampy places; the flowers are recorded to be produced on the spadix even after it has produced a young palmlet at the end. This phenomenon of producing a new stem at the end of a spadix is noticed also in S. Rumphii. Both this species and S. flabellata have long spadices which reach the ground, where a spadix will receive the necessary stimulus to produce shoots and roots; in other species such conditions are only possible when the stems are very young, and hence it has not been possible in these to observe the phenomenon of branching.

S. flabellata is the only species in the genus to produce leaves having their pinnae united even in adult stages; in other species the phenomenon may be noticed in seedling stages only.

Z. edulis Reinw. sensu Becc. in Malesia III (1886) 64 partim.

Stems short, trailing or without any part visible above ground, tufted. Leaves very large, 4–5 m. long; petiole 1–1.25 m. long, deciduously rusty furfuraceous; spines 3–5 cm. long or shorter, confluent in oblique or horizontal rows, shorter and fewer in upper parts, and in the rachis of the leaf lamina. **Leaflets** in groups of 2–3, nearly equidistant in upper parts of the young leaves, 3–costate, sigmoid, concolorous, smooth on both surfaces, spinulous along the margins; the largest mesial, 30–35 cm. long, 5–6.5 cm. wide; lowest narrower, and the uppermost often united in a bilobed flabellum. **Male spadix** 25–40 cm. long, deciduously rusty furfuraceous in axis and spathes, diffusely divided into short branches; primary spathes 8–20 cm. long, shortly tubular at base, ventrally opened into a broad, boat-shaped, acuminate limb; spike cylindrical, 4–10 cm. long, stalked, produced on primary, secondary or tertiary branches, exserted fully from its own spathe, glabrous outside or very nearly so. **Female spadix** slightly shorter and less branched than the male; spikes 7–13 cm. long, 2–2.25 cm. wide, externally glabrous or very slightly squarrose; the female flower large, 8 mm. long, accompanied by a smaller neuter flower. **Fruit** pyriform, 4–5 cm. long, 3–4 cm. in diam., gradually narrowed towards the base, abruptly contracted into a beak 5–10 mm. long, or longer in young fruits, covered with scales having upturned points; seeds 2–3 (when two semi-oboval); embryo opposite to the apical pit, slightly above the basal point.

MALAYA: Trengganu, Ulu Brang, Tersat, alt. 1000 m. (Moysey and Kiah, 33,395). Kemaman, Ulu Kajang (Corner, 30,495). Pahang, Tahan (Ridley 3,141); Kuala Lipis (Machado sub Ridley num. 11,613); Gunong Senyum (Henderson, 22,224, as Zalak Utan); Pelangai or Manchis (Burkill and Haniff, 16,791, as Buah Salak). Penang, Balek Pulau, alt. circa 660 m. (Curtis in June 1890); Telok Bahang (Curtis’s Collector, as Choochae); Government Hill.
Fig. 3. *S. glabrescens*, ♂. (Nur 11,965).

C. Flos apertus ut staminum insertio apparet. D. Spicae sectio transversa. E. Petioli pars.

Fig. 4. S. glabrescens, ♀. (A and B: Curtis 2,435; C-G: Henderson 22,224).

Gardens Bulletin, S.
(Ridley in Feb. 1892); Penara Bukit, alt. circa 660 m. (Curtis 2,435); Moniot's Road (Curtis in April 1890). Perak, Sungai Gepai, Bidur (Corner, 31,484 and 31,485); Bukit Chong, Kroh (Furtado, 33,017 as *Buah Kumbah*); Padang Chong, Kroh (Furtado, 33,006 as *Pokok Kumbah*). Selangor, Sempang (Ridley in Aug. 1909); Ulu Selangor (Goodenough in 1899); Kuala Lumpur (Ridley, 3,142 partim). *Singapore*, Garden Jungle, probably cultivated (Furtado 29,207).

This is easily distinguished by its sigmoid, grouped and concolorous leaflets, and by its spikes being externally glabrous or almost so, and also by its fruits being abruptly contracted into a long beak.

The shape of the fruits depends largely on whether they are congested or not; when congested, the fruits do not get space enough for the full development of the base and so become pyriform, gradually cuneate to the base. In young fruits, the beak is very long and gradually narrowed towards the apex; and it is therefore quite possible that the fruits, when given space, will develop at the base so as to become globose as described by HOOKER (Fl. Brit. Ind. VI, p. 474). Fruits with 4 seeds are also seen.

Stem tufted, trailing or almost absent above ground. Leaves very large; petiole 1.50–2.50 m. long, armed with 4–8 cm. long spines arranged in oblique rows or rings; lamina

Vol. XII. (1949).
Fig. 5. S. Rumphii, ♂. (Furtado 33, 025; Fructus tantum: Furtado 33, 017).
2.75–3.50 m. long, armed along the dorsum of the rachis with shorter spines which are approximate in the lower regions, solitary and distant in the upper. Leaflets in groups of 2–4 each, divergent, oblong-lanceolate, slightly falcate or sigmoidly so towards the apex, slightly paler beneath, abruptly acuminate, often ending in a filiform tip, smooth except occasionally for spinules above in the apical portion of the midcosta; margins setose; mesial leaflets largest, 60–80 cm. long, 7–9 cm. wide; apical leaflets shortest, basal narrowest. Male spadix deciduously rusty furfuraceous in axis and in spathes, 30–80 cm. long, divided into several secondary and tertiary pendulous spike-bearing branches; primary spathes lacerate longitudinally; spikes cylindrical, solitary, distant, shorter than the axillant spathe, covered with brown wool surrounding the male flowers. Female spadix larger than the male, similarly divided and covered with deciduous rusty furfur; the spike tomentose even externally; female flowers larger than the males, each accompanied by one neuter flower. Fruit obovate pyriform, or somewhat oblong, 7–8 cm. long, 4 cm. across, covered with light-coloured or fulvous scales; seeds 3, embryo basal being exactly opposite to the apical pit.

DISTRIBUTION: Burma and Sumatra.

The change in nomenclature above indicated is needed because there is evidence that WALLICH issued the plates and the Index to Pl. Asiat. Rar. III (1832) earlier than the text, so that even in the Index (to the plates), WALLICH retained the name S. Rumphii for his species. In the text, however, WALLICH changed the name to S. edulis, which he did apparently on the advice of MARTIUS (see also BLUME's manner of citing the synonym under S. Rumphii); and referred to the prior publication of the plate under the other name. BLUME's remark (op. cit. p. 158 in Observatio) that S. Rumphii Wall. has a "jus prioritatis" over S. Wallichiana Mart. corroborates this conclusion. GRIFFITH (op. cit. sub Z. edulis) and the editors of Index Kewensis also imply that S. Rumphii was published by WALLICH.

This species was based on male specimens from a Sumatran plant cultivated in the Botanic Gardens, Calcutta, and on female fruiting specimens collected by WALLICH in
Burma. The species is common in Malaya, though seldom collected. It has perhaps disappeared from some places like Penang and Singapore, where it was formerly reported to occur. The species is sometimes confused with *S. glabrescens* which has sigmoid leaflets and externally glabrous spikes. When CURTIS stated that *S. edulis* as described by GRIFFITH did not occur wild anywhere in the Malay Peninsula, it is obvious that he was speaking of the real *S. edulis*, and not of the plants described by GRIFFITH under that name.

The spadix of this species often produces a leafy sucker at its end.

B. Section LEIO-SALACCA (Leiozalacca) Becc.

Female flowers solitary; ovary smooth; fruit-scales without any pungent tips; seeds 1–3.

Stem short, tufted, hardly above ground. *Leaves* 3–4 m. long; petiole armed with light-coloured, unequal, 3–6 cm. long, mostly approximate, deflected or ascendent spines which become gradually shorter and geminate or solitary on the rachis; lamina 1.75–2.50 m. long. *Leaflets* in one plane, in groups of 2–3 or 4 on each side of the rachis, oblanceolate-sigmoid with a slightly falcate point, often ending with a filiform apex, 3–costate, smooth on both surfaces, spinulous along the margins towards the apex; mesial leaflets 35–45 cm. long, 6–10 cm. wide; lower leaflets smaller, apical ones often united. *Male spadix* 50–100 cm. long, having short branches which bear spikes either solitary or in groups of 2 or more; spathes longer than the spikes, lanceolate, acuminate, more or less lacerate, thinly covered with a deciduous rusty furfur outside; spikes 4–6 cm. long, 8–12 mm. in diam., tomentose outside, bearing two male flowers at each spathe. *Female spadix* shorter, 30–50 cm. long, covered with a long split and lacerate spathe; branches shorter than the primary spathes, 5–10 cm. long; secondary spathes shorter but similar, bearing in their axils spikelets each up to 3 cm. long and bearing a few solitary female flowers; in the upper half of the spadix the spikelets are borne directly on the main axis. *Fruit* ovoid, sometimes

Gardens Bulletin, S.
Fig. 6. *S. affinis*, ♀. (Furtado 31,149).

Vol. XII. (1949).
Fig. 7. S. affinis, ♀. (Furtado 33,058).
A. Spadicis ramus. B. Ramulus spadicis cum fructibus maturis.
C. Petioli pars. D. Frondis pars cum foliolis. E. Semina tria
ut in pericarpii involucro disposita. F. Semen integrum.
G. Semen verticaliter discissum.

Gardens Bulletin, S.
obovoid or irregular in shape, tapering both ways, mamillate at apex, covered with smooth scales disposed in 22–24 series (24–26 according to Beccari); seeds 3 or less, embryo basal exactly, opposite to the apical pit.

MALAYA: Kedah, Sungai Labong at Baling (Furtado 33,058 as Buah Salak); Dindaings, Gunong Tungal (Ridley in II–1890). Malacca, Selandor (Alvins, 332 as Pokok Ramgam); Batu Tiga (Goodenough, 1,419 as Salak Utan). Singapore, Bukit Timah (Ridley in 1898); Chan Chu Kang (Ridley 4,421 partim, as Salak Hutan).

A typica differt fructus squamis per series 18 dispositis. This differs from the type in having the scales of the fruit disposed in 18 vertical series.

BORNEO: Sarawak, Kuching (Beccari).

So far known only from the type collection. There is a great deal of variation in the number of series of scales; all the Malayan fruits I examined show 22–24 series, whereas Beccari reports that in the Malayan specimens he examined there were 24–26 series.

C. Section ELEIODOXA Becc.

Female flowers each accompanied by a neuter flower; ovary smooth; fruit-scales without any pungent tips; seed 1.

Z. affinis Griff. sensu Ridl. op. cit. II (1907) 169 et Fl. cit. V (1925) 32 partim.

Stem tufted, short or hardly above ground. Leaves large, 5–6 m. long or more including 2.5–3 m. long deciduously rusty furfuraceous petiole; the latter covered with white-coloured black-tipped narrow spines 4–5 cm. long usually united at base into short oblique or transverse series; the spines on the dorsum of the rachis of the lamina shorter,

Fig. 8. *S. conferta*. (Furtado 37,923).

often slenderer and fewer. _Leaflets_ numerous, equidistant, alternate or subopposite, gradually narrowed nearly to a straight, slightly unequal base, almost ensiform, slightly unequal at apex, more or less spinulous in the costae above, smooth below, setose along the margins; the mesial largest, 50–70 cm. long, 4–5 cm. wide; the two terminal leaflets slightly connate at base and at times also laterally united with the next pair below. _Male spadix_ erect, about 25–40 cm. long, congested, outermost spathe not seen; spikes borne on axis and on primary branches which are at times as long as the primary spikes or slightly longer, the basal spathes partly lacerate, gradually narrowed to an acuminate point; secondary spathes entire or very often so, shorter, frequently narrowed suddenly to an acuminate point; spikes bifarous, almost glabrous outside, almost equal except the terminal ones which are often smaller; male flowers in pairs at each spathe. _Female spadix_ similar to male, but shorter, erect, congested to an oblong, ovoid mass, with very short primary, palmate branches, each branch being again divided into many smaller branchlets each bearing 1–2 or more spikes; outermost spathe 60 cm. long, tubular at base, with a long lanceolate acuminate limb, armed outside with long white black-tipped spines, deciduously rusty furfuraceous, soon lacerate, fibrous; secondary spathes lacerate and in fruiting spadix often fibrous; larger spikes 10–15 cm. long, about 2 cm. through; flowers usually a neuter and a female at each spathe, equal in size, but sometimes two female flowers without any acolyte neuter or with a neuter between the two female may be found. _Fruits_ crowded, very irregular in shape but tending to become turbinate, convex or flat and shortly mucronate at apex, 4 cm. long, 2–3.5 cm. wide, with straw coloured smooth scales arranged in 21–24 series; seed solitary, surrounded with a fleshy integument, compressed longitudinally, two or three times as broad as high, nearly circular or reniform, 4–5 cm. high, 12–15 mm. broad (Beccari noticed one seed 10 mm. high, 22 mm. broad), with a broad shallow cavity at apex, and embryo at base.

MALAYA: _Kelantan, Kota Bahru_ (collect. ignot.). _Dindings_, Lumut (Ridley in II–1892; Ridley and Curtis in III–1892). _Malacca_, loc. incert. (Alvins). _Johore_, Gunong Pulai (Best, 8,322 as _Asam Paya_). _Singapore_, Chan Chu Kang (Ridley 3,143 as _Asam Payah_; 3,502; 4,421 partim, as _Salak Hutan_; 4,622 as _Salak Hutan_); _Jurong_ (Corner, 26,200: isotype of _E. orthoschista_; _Furtado_ 37,923; _Ngadiman_ 37,933 and 37,934).
Fig. 9. S. conferta. (Ngadiman 37,933).

BORNEO: British North Borneo, Jesselton at Lumot (Cuadra, A1,338, as Asam Kolambi in Brunei language).

DISTRIBUTION: Reported to occur also in Rhio and Bangka Islands.

There is a good deal of variation in this species as to size of its fruit as well as in the size and spinescence of the leaflets. BURRET has established Eleiodoxa orthoschista as distinct from E. conferta (S. conferta) but on the material available in Singapore, which lacks good specimens from Malacca (the type locality of S. conferta), I hesitate to admit his separation. S. conferta was apparently very widely spread in Singapore and its fruits were even sold in local bazaars by Malays (cf. Ridley in Journ. Roy. Asiat. Soc. Straits Settl. XXXIII, 1900, p. 176). RIDLEY has confused some material of this species with S. affinis.

Stem apparently similar in habit to S. conferta, but smaller. Leaves about 3–4 m. long including 1.5 m. petiole; spines few, distant, solitary, rarely united into lines or series, 10–15 mm. long on petiole becoming smaller and more distant on the rachis. Leaflets numerous, equidistant, distinctly sigmoid, 3–costate, smooth on both surfaces, spinul-ous along margin; mesial 45 cm. long, 3–3.5 cm. wide. Female spadix like that of S. conferta, but smaller, with shorter and narrower spikes. Fruit globose-turbinate, 2–2.5 cm. in diam.; seed discoid.

MALAYA: Perak, loc. incert. (Scortechini as Udang).

This species is known only from the type collection, which perhaps is the reason why RIDLEY has ignored it. I have not seen the type and there is nothing in the Singapore herbarium which would match the plate given by BECCARI. It differs from S. conferta by its small, mostly solitary spines on the petiole and by its falcate-sigmoid leaflets. From the plate the species looks like a mixture consisting of a young leaf of S. affinis and a spadix of S. conferta; but without any comparative study, it is unsafe to make this reduction.
WILLIAM FARQUHAR'S DRAWINGS OF MALACCA PLANTS

By I. H. Burkall.

The Royal Asiatic Society of Great Britain and Ireland possesses a volume of paintings of plants, 55 in all, which was given to it in 1827 by Lieut.-Col. William Farquhar of the Engineers, the first Resident and Commandant of Singapore. In Farquhar's handwriting on the fly-leaf is written "Medicinal plants, etc., of Malacca" and his name. It is obvious that the paintings are part of the "very large collection of drawings and subjects of Natural History" which Jack said Farquhar had made in Malacca (see Jack's letters to Wallich (Jour. Straits Branch Roy. As. Soc. 73, p. 151; 1916)).

In 1818 Raffles was instructed by the Marquess of Hastings to seek a settlement to the eastward of Malacca, and, sailing from Calcutta in December with William Jack as his personal physician, reached Penang on the 31st; Farquhar who had been in Malacca since 1803, had been put under Raffles' orders and had arrived in Penang on the 30th bringing all or part of that collection with him. Jack in the letter cited wrote "I have just had an opportunity of examining his (Farquhar's) drawings of Malacca plants. Most unfortunately from want of scientific acquaintance with the subject they are deficient in many essential points of dissection; but they will be extremely useful as a guide by taking the native names and making inquiries." Wallich says that Farquhar employed a Chinese artist. The pictures would be his work; and there is no reason to think that they are not all by one hand. Some of this artist's brush-work is very beautiful; some of his drawing is conventional and unreal; half of the pictures represent no more than the vegetative parts. Of course, Jack, now for the first time in Malaya, would feel it hopeless to put botanical names without flowers; and his criticism was just.

Under each picture (with seven exceptions) the Malay name is written in Arabic characters; one hand wrote the names under the first 25 pictures and numbered them; another wrote the names under the rest, but did not number them. Doubtless Farquhar used Malays on his staff for this; and there is none of his own handwriting anywhere; but it is clear that from somewhere there was a direction in the choice of subjects, because in the time of the first clerk Zingiberids were favoured: in the time of the second,
esculent roots had some favour. Pencilled numbers are present also, and this numbering shows that two paintings that were numbered 9 and 47 were removed before the rest were bound. The volume was bound by a book-binder in Paternoster Row, London; and a numbering in ink at the tops of the pages appears to have been done at the time of binding: this numbering takes no notice of the missing two. After the binding had been done, someone transcribed the Malay names into English characters, first in pencil and then inked them; and the same hand added a few notes, the longest of which is on the use of Croton seeds among the Tamils. This hand sometimes introduced mistakes—for instance, wrote rambaga (for rembega) on the illustration of Abutilon indicum to which it does not belong, and, faced by a picture of the race of Zingiber officinale known as halia patt, though properly so named in Malay, wrote aliea bara which belongs to a different race.

Scattered on the pages are various attempted determinations, sometimes wild, in other hands, all assuredly written after the volume left Farquhar's possession. Disregarding them, I have made the following inventory by the numbers in ink:

1. sërunai laut—\textit{Wedelia biflora} DC.
2. kêtuwir—\textit{Derris trifoliata} Lour. (\textit{D. uliginosa Benth}.)
3. balek angin—\textit{Mallotus paniculatus} Muell.–Arg.
4. balek adapt—\textit{Mussaenda}, probably \textit{mutabilis} Hook. f.
5. lênggundi—\textit{Vitex trifolia} Linn., an unusual form with simple leaves.
6. hujan panas—\textit{Phyllanthus pulcher} Wall.
7. tulang-tulang—probably one of the Rubiaceae.
8. gëndarusa—\textit{Gendarussa vulgaris} Nees.
9. (without a name)—\textit{Abutilon indicum} Don.
10. jêringau—\textit{Acorus calamus} Linn.
11. tutup bumi—\textit{Elephantopus scaber} Linn.
12. kënychur—\textit{Kwmpferia rotunda} Linn.
13. lêmpoyang wangi—\textit{Zingiber aromaticum} Valeton.
14. lênujuang—\textit{Cordyline fruticosa} Gœppert.
15. bongêlai—\textit{Zingiber cassumunar} Roxb.
16. aliya bara—\textit{Zingiber officinale} Linn., a pungent race of ginger.
17. têmu kunchi—\textit{Gastrochilus panduratum} Ridl.
18. lêngkuas—\textit{Languas galanga} Stuntz.
19. lênguas ranting—\textit{Languas melanococca} Burkill.
20. têmu pauh—\textit{Curcuma mangga} Valeton & van Zyp.
21. têmu gajah—\textit{Curcuma} probably \textit{xanthorrhiza} Roxb.

Vol. XII. (1949).
22. haliya padi—Zingiber officinale Linn., a somewhat acrid race.
23. nara pusí—Voandzeia subterranea Thouars.
24. rumput kěměnyan—Salomonia sp., agreeing with no known species.
25. ati-ati—Coleus atropurpureus Benth.
26. pokok jarak—Ricinus communis Linn., the Castor oil plant.
27. (without a name)—Hibiscus sabdariffa Linn., the Rozelle.
28. pokok sireh—Piper betle Linn., the Betel pepper plant.
29. tuba darat—Derris trifoliata Lour. as regards the fruit; but D. heptaphylla Merr. as regards the flowers.
30. rěmbega—Calotropis gigantea R. Br.
31. don tumboh duan—Bryophyllum pinnatum Kurz.
32. ubi těropong—Dioscorea esculenta Burkill, the Lesser Yam.
33. kěledek puteh—Ipomoea batatas Lam., a rather curious race.
34. ubi Jawa—Dioscorea alata Linn., probably Roxburgh's D. atropurpurea.
35. (without a name)—an epiphytic orchid.
36. (without a name)—another epiphytic orchid.
37. ubi Běnggala—Manihot utilissima Pohl, the Tapioca plant.
38. pěnggaga—Hydrocotyle asiatica Linn.
39. kěladi puar—Typhonium trilobatum Schott.
40. chěměkian—Croton tiglium Linn., the Croton oil plant.
41. kunyit—Curcuma domestica Valeton, the Turmeric plant.
42. kěladi sěminyak—Colocasia esculenta Schott, a pink skinned race.
43. kěladi bělanda—the same, a pale brown skinned race.
44. kěladi Jawa—the same, a deep violet skinned race.
45. kěladi sěrakeh běnuwa—the same, with very numerous daughter tubers (probably the same race now known as kěladi rakit).
46. nasi-nasi—Psychotria sp.
47. balam—Madhuca malaccensis H. J. Lam.
48. sunti—Adinandra, probably A. acuminata Korth.
49. pinang utan—Pinanga sp.
50. chengkoh—Mesua ferrea Linn.
51. bidara pahit—Eurycoma longifolia Jack.
52. (without a name)—Hibiscus abelmoschus Linn.

Gardens Bulletin, S.
53. (without a name)—*Clerodendron paniculatum* Linn.

54. kēchubong puteh—*Datura metel* Linn.

55. (without a name)—*Connarbus ferrugineus* Jack.

It is obvious that most of the plants came from gardens in Malacca; others would be found in the untidy ground which surrounded the port and was kept partly cleared that unwelcome visitors might not approach unseen. Only four are actually trees. It is interesting to read a note which calls the Tapioca the best tuber available in Malacca. Of the four races of kēladi (nos. 42–45) local tradition, as incorporated in the names, attributed one to Java and a second to importation by the Dutch. The Greater Yam seems to have attracted less interest; and the Lesser Yam (no. 32) seemed to the writer of the notes to need this comment—"a most excellent vegetable partaking of the yam and sweet potato"—as if it were unfamiliar. Only one race of the Sweet potato is figured and that a curious one. Of 'greens', pēnggaga alone obtained a picture. The pictures of the Zingiberids are praiseworthy representations of flowerless, and, in general, not fully grown plants; and Jack would be helpless in face of them. The plants of magic in medicine,—gėndarusa (no. 8), tutup bumi (no. 11), lēnjuang (no. 14) and *Clerodendron paniculatum* (no. 53)—are pictured, the first in its dark form, because the dark is reputed to be the more powerful; so too lēnjuang is figured in its deep claret form. It is interesting to observe tutup bumi drawn as if from garden soil, whereas tutup bumi in order to possess the pentacle of Solomon's seal should be grown on sun-dried hard soil. Of medicines that every Malay uses without any harm to himself, sērunai laut (no. 1), lēnggundi (no. 5), ati-ati (no. 25), hujan panas (no. 6) and balek angin (no. 3) are figured; and so are potent drugs as Croton and Datura. Farquhar's title 'Medicinal plants etc.' is justified.

The use of sunti for Adinandra is unexpected. The name nara pusì appears in R. J. Wilkinson's Malay-English Dictionary (1932, pp. 165 and 292) as of an unidentified plant. It is now possible with reasonable certainty to equate it with *Voandzeia subterranea*, the Bambara Groundnut, though the Chinese artist did not draw the secondary venation in the leaves correctly, made the runners unduly thick and had neither flowers nor the characteristic pods which the plant buries in the soil. Arab traders probably brought the seeds to Malacca, and Zanzibar was a likely source.

Vol. XII. (1949).
FLORA MALESIANA

This promises to be the greatest undertaking of its kind ever achieved. The number of species of higher plants to be described in the whole Malaysian region is estimated at 25,000 to 30,000. The largest comparable work previously accomplished was the Flora of British India, which included about 14,000 species.

The sample part already published gives indications of the scope of the whole. First we have the beginning of the essay on general considerations which is to introduce Vol. 4. This is headed with the remark "we should endeavour to determine how few, not how many species are comprised in the Malaysian Flora". Copious quotations are given from Hooker's introductory essay to his Flora Indica, as Dr. van Steenis believes that the considerations there presented by Hooker still largely hold good today. In particular, Dr. van Steenis emphasizes the great need for monographic treatment of all groups, without which no proper judgement of individual species can be made. He goes on to survey variation among Malaysian plants, its many causes and manifestations; first variations induced by the environment and then those bound to the genotype are discussed. He is strongly of opinion that a narrow concept of species is neither in accordance with the modern genetic viewpoint nor with the best practical interests of taxonomy.

Next come the first 39 pages of taxonomic revisions, beginning the text of Volume 4. The two-column arrangement for the individual descriptions of species, in smaller type than the main family and generic headings which cross the whole page, is convenient and excellently set up. The details of the arrangement are to be standardized for all families, and provide necessary information compactly and adequately. One would like to see some more brief notes on the probable affinities of small families to larger ones, such as that given by Dr. van Steenis himself for Ancistrocladaceae; also notes on the basis of classification within the larger families. The illustrations are good and excellently reproduced, but in a few cases details of flowers are not given. It is most desirable that small drawings to show floral structure should be given in at least one species in each genus. Drawings to show details of floral parts would for example be a helpful supplement to the excellent line drawings showing external form of plants in Burmanniaceae.

Gardens Bulletin, S.
The publication concludes with brief samples of treatment of Volume 1 (Malaysian Plant Collectors and Collections, a Cyclopædia of botanical exploration in Malaysia), Volume 2 (Malaysian Plant Life) and Volume 3 (Malaysian Plant Geography). These three volumes together will form a most comprehensive introduction to the study of the Malaysian flora.

This great work could only be accomplished by co-operation of many botanists in many different countries. But it needs also a co-ordination of design for which one person must in the main be responsible. The whole work is largely due to the vision of Dr. C. G. G. J. van Steenis, and it is fortunate that he has also been enabled to undertake the co-ordinating work of General Editor. To his unremitting labour no less than to his breadth of knowledge is due the successful launching of this great enterprise. To the Government of Indonesia also much credit is due in these difficult times for undertaking a long-term project, and for recognition of its great importance as a survey of the plant life of the Malayan region.

The Malay Peninsula, which is included in the area covered by Flora Malesiana, will also benefit from this work. We are at present helping by loan of specimens from the Singapore herbarium, so that monographers may have an up-to-date local knowledge of available data concerning the plants they are studying. We hope also that some monographic study may be undertaken in Singapore.

We welcome the appearance of the first issue of Flora Malesiana, which is an outstanding event in the history of tropical botany, and express our congratulations to the Editor and our good wishes for the future success of his efforts.
INDEX TO VOLUME XII

New Binomials are printed in **Bold-faced type** and synonyms in **italics**.

Abutilon indicum **Don**, 405.
Acorus calamus **L.**, 405.
Adinandra acuminata **Korth.**, 406.
aliya bara, 405.
asam kolambi, 403.
asam paya, 401.
Asplenium septentrionale, 305.
at-ati, 406.
balam, 406.
balek adap, 405.
balek angin, 405.
Belvisia **Mirbel.**, 305.
Belvisia spicata, 305.
Betel pepper, 406.
bidara pahit, 406.
bongelai, 405.
Bromheadia alticola, 295, 301.
Bromheadia Finlaysoniana, Goverans Flowering of, 295.
Bryophyllum pinnatum **Kurz.**, 406.
bua kumbah, 393.
buah salak, 390, 399.
Burrill, I. H.: William Farquhar’s Drawings of Malacca Plants, 404.
Calotropis gigantea **R. Br.**, 406.
chèmèkian, 406.
chengkoh, 406.
chooche, 390.
Clerodendron paniculatum **L.**, 407.
Coleus atropurpureus **Benth.**, 406.
Colocasia esculenta **Schott.**, 406.
Connarus ferrugineus **Jack.**, 407.
Cordyline fruticosa **Goeppert.**, 405.
Croton oil plant, 406.
Croton Tiglium **L.**, 406.
Ctenopteris (Blume) **Kunze.**, 306.
Ctenopteris venulosa (Bl.) **Kunze.**, 306.
Curcuma domestica **Valeton.**, 406.
xanthorrhiza **Roxb.**, 405.
Datura metel **L.**, 407.
Dendrobium crumenatum, 295, 301.
Derris heptaphylla **Merr.**, 406.
trifoliata **Lour.**, 405, 406.
Dioscorea alata **L.**, 406.
esculenta **Burrill.**, 406.
don tumboh duan, 406.
Drawings of Malacca Plants, William Farquhar’s, 404.
Ecliodoxa conferta (Griff.) **Burr.**, 399.
orthoschista **Burr.**, 399.
Elephantopus scaber **L.**, 406.
Eugenia (Myrtaceae), The Genus in Malaya, 1.
Index, 289.
Key to Sections of, 17.
List of Collectors Numbers, 274.
Notes on Seed Structure of Some Exotic Species, 272.
Section Syzygium, Key to Groups, 17.
Section Syzygium, Key to Species, 18.
Eurycoma longifolia **Jack.**, 406.
Ferns, The Selection of Type-Species of Some Old Genera of, 303.
Flora Malesiana, Review, 408.
And Holttum, R. E.: The Status of Botanical Literature Published before 1753, 307.
Further Commentary on the Rules of Nomenclature, 311.
Gastrochilus panduratum **Ridl.**, 405.
gèndarusa, 405.

Vol. XII. (1949).
Gendarussa vulgaris Nees, 405.
Gregarious Flowering of the Terrestrial Orchid Bromheadia Finlaysoniana, 295.

haliya padi, 406.
 Hibiscus abelmoschus L., 406.
sabdariffa L., 406.
Holttum, R. E.: Gregarious Flowering of the Terrestrial Orchid Bromheadia Finlaysoniana, 295.
The Selection of Type-Species of Some Old Genera of Ferns, 303.
And Furtado, C. X.: The Status of Botanical Literature Published before 1753, 307.
hujan panas, 405.
Hydrocotyle asiatica L., 406.
Hymenolepis Cassini, 305.
Hymenolepis Kaulf., 305.
Ipomoea batatas Lam., 406.
Ipomoea batatas L., 406.

Kämpferia rotunda L., 405.
kêchubong puteh, 407.
kêladi bêlanda, 406.
Jawa, 406.
puar, 406.
rakit, 406.
sêmiñyak, 406.
sêrakeh bênuwa, 406.
kêledek puteh, 406.
kênchur, 405.
kêtuwir, 405.
kombar, 95.
kunyit, 406.

Languas galanga Stuntz, 405.
melanococca Burkill, 405.
lempoyang wangi, 405.
lênggundi, 405.
lêngkuas, 405.
lênguas ranting, 405.
lênjuang, 405.

Madhuca malaccensis H. J. L., 406.
Mallotus paniculatus, M. A., 405.
Manihot utilisissima Pohl, 406.
Mesua ferrea L., 406.
Mussenda mutabilis Hook. F., 405.
nara pusí, 406.
nasi-nasi, 406.

pênggaga, 406.
Phyllanthus pulcher Wall., 405.
pinang utan, 406.
Pinanga sp., 406.
Piper betle L., 406.
pokok jarak, 406.
kumbah, 393.
ramgam, 399.
sireh, 406.
Polypondium trichomanoides, 306.
Psychotria sp., 406.
Pteropus Desv., 304.
Pteropus piloselloides, 304.
scolopendrina, 304.

rêmbeجا, 406.
Review, Flora Malesiana, 408.
Ricinus communis L., 406.
Rotan Zalak Rumphius, 384.
Rozelle, 406.
Rules of Nomenclature, A Further Commentary on, 311.
rumput kêményan, 406.

Salacca:
affinis Griff., 396.
var. borneensis Furtado, stat. nov., 399.
conferta Griff., 399.
edulis Reinw., 384.
flabellata Furtado, sp. nov., 387.
glabrescens Griff., 390.
Key to the Species, 383.
Malayan Species of, 378.
Rumphii Wall., 386, 393.
Section Eleiodoxa Becc., 399.
Section Eu-Salacca, 384.
Section Leio-Salacca Becc., 396.
Scortechinii Becc., 403.
sumatrana Becc., 384.
vermicularis, 387.
salak chabang, 389.
salak utan, 399, 401.
Salomonia sp., 406.
sêrunai laut, 405.
Status of Botanical Literature Published before 1753, 307.
sunti, 406.

Tapioca plant, 406.
têmu gajah, 405.
kunchi, 405.
pauh, 405.

Gardens Bulletin, S.
Thelypteris Schmidel, 305.
dioscoridis, 305.
palustris non ramosa, 305.
non ramosa Schmidel, 305.
Trichomanes L., 304.
crispum, 304.
scandens, 304.
tuba darat, 406.
tulang-tulang, 405.
Turmeric plant, 406.
tutup bumi, 405.
Type-Species of Some Old Genera of Ferns, Selection of, 303.
Typhonium trilobatum Schott, 406.

ubi Benggala, 406.
Jawa, 406.
téropong, 406.
udang, 403.

Vandenboschia Copel., 304.
Vitex trifolia L., 405.
Voandzeia subterranea Thouars, 406.

Wedelia biflora DC., 405.
William Farquhar's Drawings of Malacca Plants, 404.

Zalacca, 378.
affinis Griff., sensu Ridl., 399.
Beccarii Hook. F., 393.
Blumeana Mart., 384.
Blumeana Mart. sensu Ridl., 390.
borneensis Becc., 399.
edulis Reinw. apud Blume, 384.
edulis Reinw. sensu Becc., 390.
edulis Reinw. sensu Wall., 393.
edulis var. amboinensis Becc., 384.
macrostachya Griff., 393.
Wallichiana Mart., 393.
zalak utan, 390.
Zingiber aromaticum Valeton, 405.
cassumunar Roxb., 405.
officinale L., 405, 406.

Vol. XII. (1949).
1. The Agricultural Bulletin of the Malay Peninsula (Old Series) nos. 1–9, 1891–1900 (out of print).

2. The Agricultural Bulletin of the Straits and F.M.S. (Second Series, monthly issues) Vols. 1–10, 1901–1911. Most numbers are available, price 50 cents each or $5 per volume.

 Vol. 1 nos. 1–5, January to May 1912 (as Agricultural Bulletin of the Straits and F.M.S., Third Series); nos. 6–12, December 1913–March 1917 (as The Gardens Bulletin, S.S.).
 Vol. 2 nos. 1–12, July 1918–August 1921.
 Vol. 3 nos. 1–12, August 1923–March 1925.
 Vol. 4 nos. 1–12, June 1926–January 1929.
 Vol. 5 nos. 1–12, August 1929–June 1932.
 Vol. 7 parts 1–3, September 1932–June 1934.
 Vol. 8 parts 1–4, October 1934–October 1935.
 Vol. 9 parts 1–4, December 1935–March 1938.
 Vol. 10 parts 1 and 2, January 1939–August 1939.
 Vol. 11 parts 1–3, May 1939–August 1941.

 Vol. 11 part 4, September 1947.
 Vol. 12 part 1, April 1949.

The above former issues of the Gardens Bulletin may be purchased from the Botanic Gardens, Singapore, at $5 per volume or 50 cents per number for vols. 1–5 (Vol. 6, of 15 numbers, $7.50); in some cases two or more numbers were published together. Vols. 7–11 are published at $8 per volume; the prices of parts vary according to their size. The parts are published at irregular intervals, as material is available.

Subscriptions per volume, payable in advance, $12.50 in Malaya, $13/- or 30/- outside Malaya.